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ABSTRACT

With the advancement of technology, there has been an exponential growth in the volume

of data that is continuously being generated by several applications in domains such as finance,

networking, security. Examples of such continuously streaming data include internet traffic

data, sensor readings, tweets, stock market data, telecommunication records. As a result,

processing and analyzing data to derive useful insights from them in real time is becoming

increasingly important.

The goal of my research is to propose techniques to effectively find aggregates and patterns

from massive distributed data stream in real time. In many real world applications, there may

be specific user requirements for analyzing data. We consider three different user requirements

for our work - Sliding window, Distributed data stream, and a Union of historical and streaming

data.

We aim to address the following problems in our research : First, we present a detailed

experimental evaluation of streaming algorithms over sliding window for distinct counting,

which is a fundamental aggregation problem widely applied in database query optimization and

network monitoring. Next, we present the first communication-efficient distributed algorithm

for tracking persistent items in a distributed data stream over both infinite and sliding window.

We present theoretical analysis on communication cost and accuracy, and provide experimental

results to validate the guarantees. Finally, we present the design and evaluation of a low cost

algorithm that identifies quantiles from a union of historical and streaming data with improved

accuracy.
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CHAPTER 1. INTRODUCTION

With the advancement of technology, several domains, such as finance, health, energy,

security, have become extremely dependent on data (or information). As a result, in recent

years, there has been an explosion in the volume of data that is continuously being generated

by applications in these domains. These large, continuous, rapid and generally unbounded flow

of data are called data stream [64]. Examples of data stream include internet traffic data,

sensor readings, tweets, stock market data, telecommunication records.

Real time analysis of data stream has been recognized as extremely insightful and important

for many applications. A few examples of such applications are cyber security (for instance,

identifying network attacks such as worm propagation and DDoS attack [82]), stock market

(stock price prediction), Internet of Things (decision making in sensors), telecom (fraudulent

detection). Consequently, there has been a lot of study on solving fundamental as well as

complex problems over a data stream. Some of the example problems are counting unique

elements [30, 3, 6, 38], identifying quantiles [63, 46, 73], identifying heavy hitters (or frequent

items) [62, 57, 17], identifying persistent items [41, 55].

However, even the most fundamental database problem, such as count distinct [30] or per-

centile [63], gets harder as the size of data grows. These problems especially become challenging

in a streaming context due to the dynamic nature of data stream and its concept drifting, i.e

properties of data continuously evolving with time. Given that the memory size of a stream

processing system is very limited compared to the size of a data stream that it processes, it is

extremely hard to solve most of the streaming problems in real time. Hence, the state-of-the-art

research on solving streaming problems provide a trade-off between the memory requirement

of their proposed algorithms and accuracy of the results given by these algorithms.
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In our work, we have proposed algorithms to identify interesting events or compute aggre-

gates from a large scale data stream in real time and performed experimental evaluation of

these algorithms to demonstrate their performance in practice. In many real world applica-

tions, these streaming problems are required to be solved for specific user requirements. We

have considered three such requirements for our work: Sliding Window [22], Distributed Data

Stream [38] and Union of historical data with live data stream. They have been discussed below

in details:

1.1 User Requirements for Data Analytics

In this section we describe the three user requirements that we have considered to solve

important problems on large data.

1.1.1 Sliding Window

Window is a concept used in data stream analytics to limit the scope of data on which

analysis is performed. Sliding window model [22, 38, 42, 12, 67, 8, 33] is used to restrict the

scope to the most recently observed data elements. There are two commonly considered types

of sliding windows, “count-based” and “time-based” window. A count-based window of size

W is the set of W most recent elements in the stream. A time-based window of size T is the

set of all stream elements that have arrived within T most recent time units. Depending on

the application, the expired elements, i.e. elements which are no more a part of the current

window, are either discarded or archived.

Aggregation over a sliding window arises naturally in real-time monitoring situations such as

network traffic engineering, telecom analytics, and cyber security (e.g. [22, 32, 38, 42, 9, 78, 7]).

For instance, in network traffic engineering ([31]), current network performance is monitored

over a sliding window to adjust the bandwidth of the network dynamically. The abstraction

of a sliding window is well accepted today and has found its way into the query processing

interface of major stream processing systems, including IBM Infosphere Streams ([65]) and

Apache Spark Streaming ([90]). For instance, in IBM Infosphere Streams, it is possible to

apply each stream aggregation operator (including distinct counting) over a sliding window.
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The major challenge involved with analyzing data stream in the context of a sliding window

is that the deletion of the expired elements from current window is implicit [8], i.e it is not

possible to identify the deleted elements of a data stream without storing the entire window.

We use the term “infinite window” for a scenario where the scope of analysis is the entire

data stream observed so far.

1.1.2 Distributed Data Stream

Motivated by distributed network monitoring, we consider monitoring of data stream that

is distributed across multiple sites, so that no single processor observes all the data. A single

node can only observe the local stream, and the target of monitoring is the logical stream that

is formed through the union of all local streams. Monitoring each individual stream in isolation

may not yield the desired insights, and the interaction between the different streams needs to

be considered carefully. This setup is called the distributed streams model [37, 38, 20, 76, 56,

21, 79]. Web log analytics [27, 52, 69] is an example application that can be modeled as a

distributed stream. In this system, there are multiple web servers each of which have their own

log of web accesses, which is a (large) locally observable stream, but patterns such as typical

user behavior, and anomalies that could lead to malicious user behavior, have to be detected

on the union of the distributed web logs.

We consider the following distributed streaming model, that has also been adopted in prior

work [37, 38, 20]. The distributed system has k sites, numbered from 1 to k; each site i receives

a local stream Ri. There is a special coordinator site that communicates with the individual

sites and is required to perform all aggregation and mining tasks in the (logical) stream
⋃k
i=1Ri

formed by the union of all streams. The challenge here is to minimize the communication cost

between the coordinator and the local nodes, while analyzing the distributed stream.

As opposed to the above defined model, when a single node observes and processes the

entire logical data stream, it is referred to as Centralized Model.
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1.1.3 Union of Historical and Streaming Data

In many applications, after the real time analysis of a live data stream, it is archived as

historical data in a data warehouse for later and deeper analysis by batch processing system.

Recently, researchers have recognized the importance of integrating the data stream processing

with historical data processing for enabling longer term analysis of data, and utilizing past

data to bring more context to the current data [5, 43]. This integration has been considered

significant in complex event processing (CEP) [24] and can also be used for predictive analysis

and correlation of streaming and historical data.

We consider a setup where a data stream is captured and processed in real time. The

data stream is then loaded into a data warehouse. The loading and indexing of data is done

periodically in batch, in intervals of a “time step”. For instance, a time step maybe one day or

a week. Data that is not loaded into the warehouse yet is referred to as the “streaming data”

or “data stream”.

Some of the example applications, where analysis of the union of historical and streaming

data, is useful, are network monitoring for intrusion detection [70, 5], financial trading and

real-time bidding [94], traffic monitoring [81].

Current literature mostly focus on developing efficient architectural model [91, 44] for data

integration [68, 23, 24, 81, 5, 1, 11, 91]. The paper [44] proposes an architectural framework

of streaming warehouse called DataDepot, designed to store streaming data, thus allowing

analysis of massive amount of historical data over a time frame of many years. The paper [91]

proposes a model which enables data analysis over the union of historical and streaming data.

1.2 Hypothesis

It is possible to design, implement and evaluate low cost streaming algorithms to find

patterns such as persistence from a distributed data stream over both infinite and sliding

window and to compute aggregates such as quantiles from an integration of historical and

streaming data, with proven guarantees on performance and accuracy, in real time. It is also

possible to perform an experimental evaluation of streaming algorithms such as that for distinct

counting, to find the algorithm that performs the best in terms of accuracy and runtime.



www.manaraa.com

5

1.3 Contributions

We addressed the following problems as part of my research goal:

1.3.1 Evaluation of Distinct Count Streaming Algorithms over a Sliding Win-

dow [75]

Distinct counting is the problem of computing the number of distinct or unique elements

in a data stream. It is a fundamental problem in databases with a wide variety of applications

in database query processing and optimization ([72, 85, 89, 84, 34]) and network monitoring

([80, 54, 74]). It is one of the earliest problems studied in the area of streaming algorithms.

An example application of distinct counting in network monitoring is to track the number

of distinct network connections established by a source IP address. Tracking sources that

establish a large number of distinct connections can help identify network anomalies such as

worm propagation and DDoS attacks ([82]). Since a network monitor has to simultaneously

monitor a number of sources, it cannot afford to use much memory for each source, and needs

a small-space data structure for counting the number of distinct identifiers per source. Further,

it is necessary to count the number of distinct identifiers within a subsequence of the stream

consisting of the most recently observed elements, commonly modeled using a “sliding window”

in the stream.

From a theoretical perspective, distinct counting is widely studied e.g. [30, 3, 37, 6, 35, 13,

47, 50, 25, 32, 40, 84, 86, 29, 16]. However, there has not been much attention to engineering

a good implementation. Most current algorithms for distinct counting over a stream (e.g [30,

3, 37, 6, 13, 47, 50, 25, 32, 40, 84, 86]) have been designed for the case of “infinite window”,

where the scope of aggregation is all the elements seen so far. There have been some algorithms

designed for a sliding window (e.g [38, 22, 93]), but so far, there has not been a comprehensive

evaluation and comparison of different approaches.

We present the first detailed experimental evaluation of algorithms for distinct counting

over a sliding window. We consider prominent algorithms and evaluate them with respect to

their memory consumption, processing time, query time, and accuracy. In some cases that we
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considered, it was known previously how to extend the algorithm to a sliding window, while

in other cases, we design an extension to a sliding window of a distinct counting algorithm

originally designed for the infinite window.

1.3.2 Identification of Persistent Items from Distributed Streams [75]

We address the identification of a feature called a “persistent item” from a massive dis-

tributed data stream. A persistent item is one that occurs regularly in the stream, but does

not necessarily contribute significantly to the volume of the stream. If a stream is divided into

n equal timeslots, then persistence of an item is the number of distinct timeslots out of the n

timeslots, where the item appeared in the stream. A persistent item in a distributed set up is

defined as the number of distinct time slots where the item appeared in the union of all the

streams. Note that multiple occurrences of the same item in the same timeslot, whether at the

same site or at different sites, do not contribute repeatedly to the persistence of the item.

Persistence is typical of many stealthy types of traffic on the Internet. Identifying persistent

items can help in identifying anomalous and potentially malicious behavior in a network. For

instance, Giroire et al. [41] showed that tracking all persistent destinations arising in traffic from

end hosts in a domain led one to identify botnet Command and Control (C&C) destinations.

The C&C destinations take control over compromised end hosts to create a botnet and carry

out malicious activities in the network. Giroire et al. observed that the C&C centers had to

be in regular contact with the compromised end hosts to carry out their activities, and hence

the persistence of the C&C destinations were high in the streams emanating from the end

hosts. However, in order to evade detection by traditional volume-based anomaly detectors,

the C&C traffic was designed to be low-volume and hence the C&C centers did not show up as

heavy-hitters within the streams. Another instance is in Pay-Per-Click Online Advertising 1,

where identifying persistent items can be used to detect click fraud [92]. In this instance, rival

companies generate false clicks on advertisements at regular but infrequent intervals. In order

to evade detection by volume-based detectors, the volume of such false clicks is kept low, and

hence these do not appear as heavy hitters in the click stream.

1http://en.wikipedia.org/wiki/Pay per click
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In general, persistence captures behavior when a set of entities (perhaps controlled by a

malicious user) together have regular communication with a remote entity, but try to hide the

communication by keeping its volume small and having it originate from different entities at

different times. Such behaviors are not caught by tracking frequent items within a stream.

The goal of this work is to devise an algorithm for identifying persistent items, which

minimizes (1) the communication between the processors and (2) the memory footprint of the

algorithm, both per node, and overall.

1.3.3 Quantile Computation from a Union of Historical and Streaming data

A quantile is a fundamental analytical primitive, defined as follows. Let D denote a dataset

of n elements chosen from a totally ordered universe. For an element e ∈ D, the rank of the

element, denoted by rank(e,D), is defined as the number of elements in D that are less than

or equal to e.

Definition 1. For 0 < φ < 1, φ-quantile of D is defined as the smallest element e such that

rank(e,D) ≥ φn.

Quantiles are widely used to describe and understand the distribution of data. For instance,

the median is the 0.5-quantile. The median is widely used as a measure of the “average” of

data, and is less sensitive to outliers than the mean. The set consisting of the 0.25-quantile,

the median, and the 0.75-quantile is known as the quartiles of data.

Quantile computation on large dynamic data is important in many applications, for in-

stance, in the monitoring of web server latency [28]. Latency, defined as the time elapsed

between a request issued at the client and the receipt of the response from the server, is an

important measure of the performance of a web service. The median latency is a measure of the

“typical” performance experienced by users, and the 0.95-quantile and 0.99-quantile are used to

get a detailed insight on the performance that most users experience. Similarly, quantiles find

application in network performance measurement, e.g, .to determine the skewness in the TCP

round trip time (RTT) [18]. Such quantile computations are a key functionality provided by

many Data Stream Management Systems (DSMS), such as GS Tool [18], that provide support

for real-time alerting over high-velocity streaming data generated by modern enterprises.
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While DSMSes have proven immensely successful in supporting real-time analytics over

streaming data, they lack the ability to perform sophisticated analysis of streaming data in the

context of historical data, for example, comparing current trends in the streaming data with

those observed over different time periods in the last few years. Such an integrated analysis

of historical and streaming data is required by many emerging applications including network

monitoring for intrusion detection [70, 5], financial trading, real-time bidding [94], and traffic

monitoring [81]. To address the demands of such applications, data stream warehousing systems,

such as TidalRace [49], have recently emerged. In such systems data streams, in addition to

being analyzed in real-time, are also archived in a data warehouse for further analysis. At

the time the streams are observed, it is also necessary to take an integrated view of streaming

and archived historical data, to enable comparisons with historical trends, and to utilize past

data to bring more context to the current data [5, 43]. Such an integrated processing has been

considered significant in complex event processing (CEP) [24] and is used for predictive analysis

and correlation of streaming and historical data.

However, there has been little work on query processing methods for the union of historical

and streaming data. While there is a vast literature on query processing on purely streaming

data, and for query processing on stored data based on indexes, these methods do not work

directly for integrated processing of streaming and historical data. Our work takes a first step in

this direction of designing integrated query processing methods for historical and streaming data

by considering the estimation of quantiles, one of the most fundamental analytical primitives.
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CHAPTER 2. AN EVALUATION OF STREAMING ALGORITHMS

FOR DISTINCT COUNTING OVER A SLIDING WINDOW

Let S be a stream of identifiers, each chosen from a universe U . We consider the problem

of maintaining the number of distinct identifiers in S in a single pass through S using limited

memory, a problem we henceforth refer to as “distinct counting”. In this work, we consider the

efficient implementation of distinct counting over a sliding window of a stream.

2.0.3.1 Goal

We present the first detailed experimental evaluation of algorithms for distinct counting

over a sliding window. We consider prominent algorithms and evaluate them with respect to

their memory consumption, processing time, query time, and accuracy. In some cases that we

considered, it was known previously how to extend the algorithm to a sliding window, while

in other cases, we design an extension to a sliding window of a distinct counting algorithm

originally designed for the infinite window. We set out to answer the following questions.

• How do different algorithms compare in terms of accuracy and processing time, given the

same amount of main memory?

• Most algorithms for distinct counting work as follows. They first design a “rough” esti-

mator whose output is a random variable, but whose error can be large. Then, many such

estimators are aggregated in order to improve the accuracy. A few different methods are

used for boosting accuracy, including“median of many”, “split and add”, and “stochastic

averaging”; these methods are described in Section 2.3. Which aggregation method is

suitable for each algorithm?
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• Every algorithm known for distinct counting uses a hash function that maps input iden-

tifiers, which maybe non-uniformly distributed within the input universe, to another uni-

verse, where they are uniformly distributed. The hash function has a significant impact

on the accuracy and the runtime. Which hash function gives the best performance?

• How is the performance of an algorithm affected by the relative frequencies of queries (for

the number of distinct elements) versus element arrivals?

2.1 Contributions

We present the first experimental evaluation of algorithms for distinct counting over a

sliding window. Algorithms: We consider the following prominent algorithms for distinct

counting: Randomized Wave (RW) [38], Probabilistic Counting with Stochastic Averaging

(PCSA) [30, 22], Linear Counting (LC) [84], Loglog (DF) [25], and the first algorithm due to

Bar-Yossef et al. [6], which we call BJKST1. Among these, RW is the only algorithm which was

designed for distinct counting over a sliding window. Though PCSA was originally designed for

an infinite window, an extension to a sliding window was described in [22]. For the rest of the

algorithms, LC, DF, and BJKST1, we present an extension for the case of a sliding window.

Hash Functions: Given a set of distinct inputs, an ideal hash function generates mutually

independent random numbers as its output, but we do not know of such an ideal hash function

, and hence use functions that have been empirically observed to work well. We compared five

popular hash functions, MurmurHash 1, Jenkins Hash 2, modulo congruential hash, Fowler-

Noll-Vo (FNV) 3 hash and the Secure Hash Algorithm 1 (SHA-1) 4., to identify the one that

performs best for our purpose.

Accuracy Boosting Method: We compared the performance of each algorithm combined

with different methods for boosting accuracy. In the popular “Median-of-k” approach, proposed

for use in [37, 38, 50] many independent instances of the algorithm are run, and the final

estimate is the median of the estimates returned by all instances. In “Split-and-Add”, the

1https://sites.google.com/site/murmurhash/
2http://www.burtleburtle.net/bob/hash/doobs.html
3http://www.isthe.com/chongo/tech/comp/fnv/
4https://tools.ietf.org/html/rfc3174



www.manaraa.com

11

universe is partitioned into k non-overlapping sets of approximately equal size using a hash

function, which induces k substreams of the original stream. These substreams are processed

using different estimators. The final estimate is obtained by adding the different estimates from

individual instances. In “Stochastic Averaging”, used in [30, 25], the universe is partitioned

into k non-overlapping intervals using a hash function. The final estimate is obtained by

computing a certain function over a substream corresponding to each partition, averaging these

over all partitions, and then finally computing a different function over the average. Stochastic

averaging is further described in Section 2.3.1.1.

Relative Frequency of Queries versus Updates: Some algorithms, such as LC, per-

form well when queries are infrequent, and their performance degrades when queries become

more frequent. We investigated the impact of the frequency of queries by comparing the per-

formance under different mixes of query/update.

2.1.1 Summary of Results

• Accuracy: Given equal memory on the same dataset, we observed that the Randomized

Wave (RW) consistently produces the most accurate estimate, followed by PCSA and then

BJKST1. We also observe that Linear Counting (LC) performs with good accuracy when

the memory allotted is large relative to the number of distinct elements within a sliding

window; when the memory allotted is smaller, LC is unable to produce a reasonable

estimate.

• Runtime: When the frequency of updates (element arrivals) is much larger than the

frequency of queries, PCSA and DF are the fastest algorithms, followed by RW and

BJKST1. However, if the frequency of queries increases, then the runtimes of PCSA, DF,

and LC increase significantly, and RW and BJKST1 are the fastest algorithms.

• Hash Function: We found that all algorithms consistently give the most accurate esti-

mates when MurmurHash is used as the hash function. Fortunately, it is also the fastest

of all five hash functions that we considered, so that MurmurHash is unambiguously the

best hash function among those we considered. While the accuracy of Jenkins hash is



www.manaraa.com

12

close to MurmurHash, it is slower than MurmurHash. The popular modulo congruential

hash function performs much worse than MurmurHash and Jenkins hash, in terms of

accuracy.

• Accuracy Boosting Method: We observed that PCSA and DF work best with stochas-

tic averaging. This is to be expected, since PCSA and DF were designed with Stochastic

Averaging in mind. Surprisingly, we found that the remaining algorithms (LC, RW, and

BJKST1) performed with the smallest average error when the entire space is allotted to

a single instance of the algorithm, with no further boosting of accuracy.

Note that our comparison keeps the total space fixed for different accuracy boosting

methods. For instance, if we used the median of five estimators as our accuracy boosting

method, then the space allocated to each instance of the algorithm is only a fifth of the

total space. Thus, our results do not contradict earlier results due to [6] and [38], who

advocate using the median of many estimators. Their observation is that the probability

of being inaccurate can be reduced by taking the median of many estimators, at the

expense of greater space. Our experiments show that if space is held fixed, then the

smallest average error is achieved when the entire space (memory) is given to a single

estimator.

Overall, if accuracy is the most important criterion, then RW performs best. RW is also the

fastest algorithm when the rate of updates is low relative to the rate of queries (approximately,

less than 100 updates per query). PCSA is the best choice if processing time is the most

important criterion and the rate of querying is not very frequent.

2.2 Related Work

Prior work on experimental evaluations of distinct counting include [4, 26, 60, 71], who

compare the performance of different algorithms for distinct counting such as PCSA and Lin-

ear Counting over an infinite window. The most detailed comparison for distinct counting

algorithms over infinite window seems to be due to [60], who grouped the algorithms into

different categories: Logarithmic Hashing e.g PCSA ([30]), Interval-based e.g BJKST1 ([6]),
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Pure Bucket-based e.g. Linear Counting ([84]), Hybrid Bucket Sampling e.g. Distinct Sam-

pling ([37]), Hybrid Bucket Logarithmic e.g Multiresolution Bitmap ([26]), and concluded that

Linear Counting is overall the best algorithm, both in terms of accuracy and runtime.

Our work differs from that of [60] in the following ways. Mainly, we consider aggregation

over a sliding window while they consider aggregation over an infinite window. The algorithms

involved are different, and the results that we obtain are also different. In particular, we observe

that Linear Counting (LC) does not perform very well over a sliding window. The accuracy of

LC over a sliding window is very inconsistent for our datasets when the memory used is less than

1000-2000KB; in some cases it does not even produce an estimate. In contrast, the accuracy

of RW and PCSA are consistently within 1 percent, even when the total memory is less than

1000KB. The difference in results between the sliding window case and the infinite window

case is because the sliding window data structure needs to maintain a timestamp (of expiry)

for each bit in the data structure maintained by LC. This overhead significantly increases the

space required by LC to maintain an estimate of the distinct count, and consequently decreases

its accuracy for a given space budget. In addition, our evaluation considers important decisions

such as the choice of hash function, and the accuracy boosting method. All implementations

in [60] used the modulo congruential hash function; our experiments show that other hash

functions perform much better. Further, different accuracy boosting methods are not explored.

The size of datasets that we consider (up to 100 million distinct elements) are much larger than

in the experiments of [60] (approximately 2 million distinct elements).

2.3 Materials and Methods

There are two types of sliding windows commonly considered, count-based window and

time-based window. A count-based window of size W is the set of the W most recent elements

in the stream. A time-based window of size T is the set of all stream elements that have arrived

within the T most recent time units. We consider a time-based window, since a count-based

window is a special case of a time-based window. An algorithm for a time-based window can

also be used for a count-based window by setting the timestamp to be equal to the stream

position.
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2.3.1 Algorithms

We present an overview of the algorithms that we consider. For the following discussion, we

assume that the domain of elements is [N ] = {1, 2, . . . , N}, and that N is a power of 2. Each

element of the stream is a tuple (e, t), where e ∈ [N ] and t ≥ 0 is an integer timestamp. We

assume that timestamps are in a non-decreasing order, but not necessarily consecutive. When a

query is posed at time t, the requirement is to estimate the number of distinct elements within

a timestamp based sliding window of size T , i.e. those elements with timestamps r such that

(t− T + 1) ≤ r ≤ t.

2.3.1.1 Probabilistic Counting with Stochastic Averaging (PCSA)

We recall the PCSA algorithm for an infinite window [30]. The algorithm maintains a bit

vector B of size log2N . It uses a hash function h : [N ]→ {1, 2, . . . , log2N}, such that for each

e ∈ [N ], and b ∈ {1, 2, . . . , log2N}, Pr [h(e) = b] = 2−b. Initially, all bits of B are set to 0.

When an element e arrives, B[h(e)] is set to 1. The intuition is that approximately 2i distinct

elements must be seen before B[i] is set to 1. When there is a query for the number of distinct

elements, the bits of B are scanned from position 1 onwards, to find the index of the lowest bit

x that is not set. The estimate returned is 1.29281× 2x+1.

To adapt this to a sliding window, we use ideas from [22] and [93]. Instead of a bit vector B,

we use a vector M of length log2N , indexed from 1 till log2N , to store timestamps. Initially,

all entries of M are set to 0. When an element (e, t) arrives, M [h(e)] is set to t. Note that

M [i] tracks the latest timestamp at which an element hashes to index i. When there is a

query for the number of distinct elements within a time-based sliding window of size T , the

algorithm scans M to find the smallest index x such that either M [x] is 0, or the timestamp of

x has expired, i.e. M [x] < (t − T + 1), where t is the current time. The estimate returned is

1.29281× 2x+1, as before.

We implement an enhancement of the above basic scheme, based on stochastic averaging

(PCSA), also proposed in [30]. In PCSA, k copies of the above data structure are used.

Input elements are first partitioned into k non-overlapping groups, using a hash function g; an
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element (e, t) is forwarded to one of the k data structures, according to g(e). The final estimate

is 1.29281× k× 2x̂+1, where x̂ is the average of the individual xs obtained from the k different

data structures. Similar to PCSA for an infinite window, the processing time per element of

PCSA for a sliding window is O(1) and the query time is O(k logN). Suppose that a timestamp

can be stored in T bits. The space taken by the sliding window version is O(T k logN) bits,

which is a factor Θ(T ) larger than the infinite window version which takes O(k logN) bits of

space.

AMS, due to [3] is another algorithm for distinct counting for an infinite window, with the

same intuition as PCSA. Though AMS provides a cleaner theoretical guarantee than PCSA,

PCSA has been found to be more accurate in practice than AMS, for example, as in the

evaluation by [35].

2.3.1.2 Linear Counting (LC)

Linear Counting, due to [84], uses a bit vector B of size n = Dmax/ρ, where Dmax is an

upper bound on the maximum number of distinct elements in the data stream, and ρ is a

constant called the “load factor”. The algorithm uses a hash function h : [N ] → {1, 2, . . . , n}

such that for each e ∈ [N ], and b ∈ {1, 2, . . . n}, Pr [h(e) = b] = 1/n. Initially, all bits in B are

set to 0. Each element e of the data stream is uniformly and independently hashed to an index

in the bit vector, and the corresponding bit is set to 1. When a query is made, the number

of distinct elements is estimated as m ln(n/m) where m is the number of bits in B that are

still 0. [84] show that accurate estimates can be obtained when ρ ≤ 12. However, when ρ is

significantly larger than 12, the estimates are poor due to a large density of 1s in the bit array.

We extend the above to a sliding window as follows. Instead of a bit vector, we use a vector

of timestamps, M , of size n, indexed from 1 till n. When element (e, t) arrives, M [h(e)] is set

to t. When a query is made for the number of distinct elements within the window, the entire

vector M is scanned and the number of indices that either have value 0 or whose timestamps

have expired, is used instead of m in the above formula. Note that the processing time per

element is O(1) and the time to answer a query is O(n), which is expensive since n is linear in

the number of distinct elements. The total time is still reasonable if the frequency of queries is
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small when compared with the frequency of updates (infrequent queries), but poor if queries

are more frequent.

For the case of frequent queries, we modified LC by introducing a data structures in addition

to M – a list L that comprises of tuples of the form (t, a) and is ordered according to t, the

time stamp of observation, and a is the value to which the element hashes to. In the vector M ,

in addition to a timestamp t, there is also a pointer to the occurrence of t in L, so that if an

element with a new timestamp hashes to an index in M , the corresponding entry with older

timestamp is deleted from the list, and the newer entry with current timestamp is made at the

head.

The modified version of LC, which we call “LC2”, not only requires 2T bytes to maintain

two copies of timestamp per index of M , but also an overhead for maintaining an list, which

can be twice the pointer size in a typical implementation such as the C++ Standard Template

Library. The expired timestamp is determined from the tail of L in constant time. A single

variable can keep track of the number of indexes with expired timestamps or with an initial

value of zero. When a query is posed, the number of relevant bits can be determined in O(1)

time. Overall, we get O(1) time for update as well as a query, but at the cost of a significant

space overhead. A significant drawback of LC is that ρ cannot exceed 12 ([84]), so that the

space used by the algorithm is at least Dmax/12. The accuracy of the estimate falls drastically

as ρ increases.

2.3.1.3 BJKST1

BJKST1 is the first algorithm in [6]. We first describe the infinite window version and then

present an adaptation to a sliding window. Each stream element is hashed uniformly using a

function h : [N ]→ [N3]. At each instant the algorithm maintains the τ smallest hash outputs,

for some τ that depends on the desired accuracy. When a query is posed, an estimate of distinct

count is returned as τN3

vτ
, where vτ is the τ -th smallest hash output.

We propose the following adaptation to the sliding window. We associate with each value

among the τ smallest hash outputs, a timestamp equal to the most recent time when this

value was observed. It is not possible to maintain τ -th minimum of hash outputs exactly in a
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sliding window using a bounded space for a fixed value of τ (as discussed in [22], maintaining

the minimum over a sliding window requires linear space in the worst case). So we vary the

value of τ so that the algorithm uses a bounded space to estimate distinct count. As the hash

outputs of data elements are generated randomly, the algorithm uses an expected space cost

of O( logN
ε2

) to estimate distinct count, where we set the maximum value of τ to a constant θ

which depends on the space allocated to the algorithm. Our idea is influenced by the algorithm

for computing minimum element over a sliding window in [22, 32]

We maintain a list L of (h(e), t) tuples, where e is the element ID observed at timestamp

t. When a new element (e, t) is observed, all the elements e′ with h(e′) greater than h(e)

are deleted, and (h(e), t) is inserted at the head of the list. Note that in some cases, as a

consequence of this deletion, the size of the list may even reduce to 1 (consider the case when

element (e, t) has the smallest value of hash output h(e) in current window). If the size of the

list is at least θ, we set the value of τ as θ to compute the number of distinct elements, else we

set it to the current size of the list.

Thus, at any point of time, the list is ordered by both timestamp and hash value of the

element ID, i.e for a sequence of elements (e1, t1), (e2, t2), . . . , (en, tn), h(e1) < h(e2) < . . . <

h(en) and t1 < t2 . . . < tn, and this allows us to retrieve the τ -th smallest hash values within

the window.

We did not implement the second and third algorithms in [6] for the following reasons.

These algorithms theoretically use slightly smaller space than BJKST1, but there are additional

factors hidden in the Õ notation, as well as large constant factors, so practically their space

requirement is much larger, as also analyzed in [60]. Both algorithms suppress factors involving

log (1/ε) and log log (N) factors from the space cost. The algorithm by [32] is similar to the

one by BJKST1, but does not give a smooth trade-off between space and relative error, like

in BJKST1. The algorithm due to [50] is theoretically space-optimal and can potentially be

extended to sliding windows. But we are not aware of an implementation of this algorithm,

even in the infinite window case.
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2.3.1.4 Durand-Flajolet (DF)

The Loglog algorithm by [25] for infinite window derives its name from the space cost of the

algorithm which is O(log logN). However, the sliding window version of the Loglog algorithm

does not have a space complexity of O(log logN), due to the need to maintain timestamps, and

is more expensive. Hence, the name “Loglog” is not applicable here, and we simply call it the

“DF algorithm”.

The algorithm hashes each stream element to a binary string y of length O(logN), and

finds the rank of first 1-bit from the left in y, r(y). It finds the maximum r(y), say r, over all

stream elements. This requires only O(log log(N)) space, since a single variable needs to be

maintained to keep a track of the maximum. Similar to PCSA, DF uses I different bit vectors,

and does a stochastic averaging to find the average of maximum r from all bit vectors. When

a query is posed, the estimate of the distinct count is returned as 0.39701× I× 2(avg(max(r))+1).

However, in the sliding window case, there is no easy way to maintain r over all bits set

by active elements, since this value is not a non-decreasing number, like in the case of infinite

window. Instead, similar to the PCSA algorithm, we use a vector, M , of length T to store

timestamps. In particular, each index i of the vector M maintains the most recent timestamp

during which an element was hashed to y, such that r(y) = i. The space taken by this data

structure is no longer O(log logN). In answering a query, max(r) is determined as the rank of

the highest index in M which contains a non-expired timestamp.

Super Loglog ([25]) and HyperLogLog ([48]) are modifications of Loglog that use smaller bit

vectors to reduce the space cost of the algorithm. See the study on engineering a distinct count

algorithm by [48] for further details. However, these modifications do not payoff in the sliding

window scenario due to the additional cost of maintaining the timestamps, which dominate the

memory cost and negate the advantage due to smaller bit vectors.

2.3.1.5 Randomized Wave (RW)

The RW algorithm by [38, 39] is based on sampling via a hash function. A hash function

h : [N ] → [0, . . . log2N ] is used that maps elements to levels as follows: the probability of an
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element being assigned to level j is 2−(j+1). At each level i, the algorithm maintains a (doubly

linked) list of elements (e, t) Li ordered by the timestamp t of observation. Element e when

observed at time t is inserted into lists L0, L1, L2, . . . Lh(e). If the element has already appeared

in Li, then its timestamp is updated to equal the current time. To determine if an element has

been observed in the current window, an additional data structure, a hash map, is used, with

the element identifier as the key, and the pointer to its occurrence in Li as the value. If a level

becomes full (i.e. its size exceeds the budget allotted to it), then the oldest elements in the

level are deleted from the hash map as well as the list. Further, when an element expires from

the sliding window, it is also discarded from the data structure. Discarding oldest elements is

a constant time operation because the oldest elements are stored at the tail of the list.

When a query is made, the lowest numbered level which contains the entire current sliding

window is determined, say `. The estimate of the number of distinct elements is computed as

2`|S`|, where S` is the set of all elements in level `. We have optimized the above algorithm

by inserting element e into only level h(e), rather than all levels from 0 to h(e). This improves

the processing time for an element by roughly a factor of two, while somewhat increasing the

query time, since in order to process a query the algorithm needs to consider elements in all

levels 0 . . . `, rather than only at level `.

The adaptive sampling algorithm by Wegman(see [29] for a description) is another algorithm

originally designed to compute distinct count over an infinite window. We note that if this

algorithm is adapted to a sliding window setting, the result is an algorithm similar to RW.

2.3.2 Accuracy Boosting Methods

In the “median of many” approach, used in RW and BJKST1, k independent copies of the

algorithm are run in parallel on the input stream, and the final estimate is the median of the

estimates returned by the k different copies. In “split and add”, the universe of input identifiers

is partitioned into k non-overlapping sets of approximately equal size using a hash function.

This induces k non-overlapping substreams of the original stream, each of which is processed

separately by individual copies of the algorithm. The final estimate is obtained by adding the

estimates produced from the k copies. In “Stochastic Averaging”, used in PCSA and DF, the
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universe is partitioned into k non-overlapping intervals using a hash function, inducing k non-

overlapping substreams of the original stream. The final estimate is obtained by computing a

function fi over the i-th substream, and applying a different function g over the average of the

outputs of the functions over the k partitions.

2.4 Experiments

2.4.1 Experimental Setup

We performed all experiments on a 64-bit Red Hat Linux machine with 4 cores and a

processor speed of 3.50GHz, with 16GB RAM. We used C++ with the Standard Template

Library (STL), and the gcc compiler. We implemented the algorithms PCSA, LC, BJKST1,

DF, and RW, as described in Section 2.3.1. We also implemented an exact algorithm for the

number of distinct elements over a sliding window having a high space complexity.

2.4.1.1 Datasets

We used eight datasets for our experiments - five synthetically generated datasets following

a Uniform random or Zipfian distribution, a network traffic trace, bigrams of a text file, and a

dataset derived from a real-world graph.

The Uniform Random dataset was synthetically generated by choosing elements uni-

formly at random from the set of unsigned integers ranging 1 to 100 million. This has a total of

500 million elements, with approximately 100 million distinct elements and an average of about

97 million distinct elements in a sliding window of size 45 minutes. We added timestamps to

the dataset so that the total time of observation of the data is about an hour. Since the dataset

has a uniform distribution, each element occurs with approximately the same frequency.

We generated four Zipfian datasets by choosing elements through a Zipfian distribution

with α-parameter 1.3, 1.35, 1.4 and 1.5 from the set of integers ranging 1 to 5 million. Each

dataset has a total of 500 million elements. In this paper, we have chosen to display the graphs

from the Zipfian dataset of α-parameter 1.3 with approximately 2.8 million distinct elements

and an average of about 2.3 million distinct elements in a 45 minute sliding window. The
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results from the remaining three datasets are similar to the one we have shown in the paper.

The total time of observation of the data set is set to 1 hour.

The Network Trace data is generated from anonymized traffic traces taken at a west

coast OC48 peering link for a large ISP 5. We consider each source-destination pair as a single

element. This has about 400 million elements, with approximately 26 million distinct elements

and an average of about 19 million distinct elements in a 45 minute sliding window. Data was

generated over a time period of 1 hour.

The Bigrams in a Text File is generated by compiling all text versions of ebooks provided

by Project Gutenberg 6, and then generating bigrams from the compiled text. This dataset has

about 181 million elements with approximately 4.31 million distinct elements and an average

of about 35 million distinct elements in a 45 minute sliding window. We added timestamps so

that the total time of observation of the dataset is one hour.

The Friendster Social Network graph is obtained from the Stanford Network Analysis

Project 7. The graph has about 66 million vertices and about 1.8 billion edges. We use this

network to construct a dataset as follows: we select each edge in the graph with probability

0.6 and include endpoints of selected edge as two elements in the stream. The dataset has

approximately 2 billion elements with about 55 million distinct elements and an average of

about 51 million distinct elements in a 45 minute sliding window.

2.4.1.2 Evaluation Metrics

We compare different algorithms by running them on the same datasets and allotting to each

of them the same memory budget. The main measures of the performance of these algorithms

are the accuracy and the running time.

The accuracy of an algorithm is expected to improve as the allotted memory increases. We

use two measures of accuracy, the average relative error and the worst case relative error. The

relative error for a single query is defined as |d−d̂|n , where d is the exact number of distinct

elements within the window, and d̂ is the estimate of the distinct number of elements within

5https://data.caida.org/datasets/oc48/oc48-original/
6https://www.gutenberg.org/
7http://snap.stanford.edu/data/index.html
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the window returned by the algorithm. The average relative error is the mean of the relative

errors taken over all queries for a dataset, and the worst case relative error is the maximum of

the relative errors across all queries. To get stable results, every data point in the plot is the

median of 10 runs of the algorithm.

The running time of the algorithm is the total time taken by the algorithm to process all

the elements observed in the datastream and answer the distinct count query.

2.4.2 Results

The performance of an algorithm is influenced by the hash function used and the accuracy

boosting method. In the following experiments, we first determine the best hash function and

accuracy boosting method for each algorithm, and then use these in further comparing different

algorithms.

We further run experiments to see the trend of the accuracy and the runtime variation with

the change in size of the window for a fixed memory budget.

2.4.3 Evaluation of Hash Function

The goal of our first set of experiments is to find the best hash function to use with these

algorithms. We implemented the distinct counting algorithms in an identical manner, except

for the hash function. We tried five different hash functions - MurmurHash, Jenkins, Modulo

congruential hash, SHA-1 and Fowler–Noll–Vo hash or FNV. We used the most recent ver-

sion of MurmurHash, called “MurmurHash3”, and of Jenkins, called “Spooky hash”. Modulo

congruential hash is the function h(x) = (a · x + b) mod p, where p is a large prime number

and a, b are randomly chosen integers modulo p. While simple, this function has interesting

theoretical properties ([10]). We use SHA-1 rather than SHA-2 since SHA-1 performs as fast

as SHA-2 and requires smaller memory. Though SHA-1 is less secure than SHA-2, this is not

an issue for distinct counting. We used the most recent version of FNV, FNV-1a.

The space budget for these experiments was fixed at 1000KB, and the window size was

set at 45 minutes. The results of the performance of algorithms for different hash functions

have been shown for the real network trace in Figure 2.1. Similar results were obtained for the
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other datasets, but they are not shown here due to space constraint. For the LC algorithm, no

reasonable results were obtained for any dataset with 1000KB space, and hence we have not

shown results for LC.

Observation. MurmurHash has the most consistent accuracy, and its accuracy is better

than all other hash functions that we considered. It also runs faster than the others. Jenkins

and FNV are close to MurmurHash in terms of both accuracy and runtime. The total runtime

of Modulo congruential hash is close to MurmurHash but its accuracy is poor and inconsistent.

SHA-1 performs the worst in terms of runtime, and the total runtime using SHA-1 is almost 2-3x

slower than using MurmurHash, Modulo congruential hash and Jenkins. The accuracy of SHA-

1 is consistent and better than Modulo congruential hash, but not as good as MurmurHash,

Jenkins or FNV. Hence, we have chosen MurmurHash for the rest of our experiments.

0

0.5

1

1.5

2

2.5

3

3.5

4

DF BJKST1 RW PCSA

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r 

(%
)

Algorithms (space cost: 1000KB, window size: 45 minutes)

Murmur

Jenkins

Mod-prime

SHA

FNV

0

200

400

600

800

1000

DF BJKST1 RW PCSA

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

Algorithms (space cost: 1000KB, window size: 45 minutes)

Murmur

Jenkins

Mod-prime

SHA

FNV

0

1

2

3

4

5

6

DF BJKST1 RW PCSA

W
o
rs

t 
R

e
la

ti
v
e
 E

rr
o
r 

(%
)

Algorithms (space cost: 1000KB, window size: 45 minutes)

Murmur

Jenkins

Mod-prime

SHA

FNV

(a) Average Relative Error of hash functions 

for different algorithms

(b) Worst Relative Error of hash functions 

for different algorithms

(c) Runtime of hash functions 

for different algorithms

Figure 2.1: Comparison of Hash Functions for different algorithms using Network Trace

2.4.4 Evaluation of Accuracy Boosting Method

The idea here is that the estimation accuracy can be improved by running multiple instances

of an estimator, and combining the results in some manner. The use of accuracy boosting

methods have been advocated in the past for distinct counting, including in [30, 37, 6, 50].

The goal of this set of experiments is to determine which accuracy boosting method serves

best for an algorithm. We considered three methods, “median-of-many”, “split-and-add”, and

“stochastic averaging”, which have been explained earlier in Section 2.3.2.

Any method such as the above certainly improves accuracy when compared with each indi-

vidual estimator. However, when total memory of each algorithm is held fixed while increasing
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the number of instances, each instance gets proportionately smaller memory, resulting in lower

accuracy for each individual instance. So it is not clear that accuracy boosting is useful to

improve the overall accuracy of an algorithm given a fixed memory budget. Note that the

past literature proves that accuracy boosting method such as the “median of many” method

improves the overall accuracy of the algorithm provided the space allocated for the algorithm

is also linearly increased.

From our experiments, we observed that, for the “median of many” method, the runtime

increases linearly with the number of parallel instances, but it stays almost the same for split

and add and stochastic averaging. The reason is that in the “median of many” method, the

entire data stream is passed as input to, say, k different instances of algorithm resulting in

linear increase in processing time for “median of many” method, contrary to the other two

methods where data stream is divided into non-overlapping subsets which are in turn passed as

input, each to an individual estimator of algorithm, hence resulting in no increase in runtime.

We implemented different accuracy boosting methods for each algorithm on every dataset.

The findings for each dataset were similar. We found that RW performs best without accuracy

boosting, i.e. when a single instance is used and the entire memory is given to that instance.

Figure 2.2 shows the results of experiments performed using a space budget of 1000KB and

window size 45 minutes on the network trace. Overall, the average relative error of RW without

accuracy boosting method was better than with any accuracy boosting method. As the number

of instances increase, the accuracy of the algorithm decreases due to the aforementioned reason.

The total memory required by RW is O(log (1/δ)/ε2) words, where O(log (1/δ)) is the number

of instances run for the algorithm. If the space budget is kept fixed, then the value of ε increases

with the increase in the number of instances, resulting in an lower accuracy.

A similar result is observed with BJKST1 (Figure 2.2). The algorithm maintains the τ

smallest hash values for each instance, and when multiple instances are used, the value of

τ decreases proportionally to keep the overall memory constant. We found that the average

relative error of BJKST1 was the smallest without accuracy boosting. While [6] suggested using

the median-of-k, the study by [40] and [93] suggested stochastic averaging as an improvement.

Note that these did not focus on keeping the memory budget fixed while applying the accuracy
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boosting method to the algorithms. Per our observation, the average relative error is minimized

by giving the entire memory to a single instance.

PCSA and DF combines many instances of a basic algorithm, which uses a bit vector of a

fixed size, using stochastic averaging. We tried combining multiple instances of PCSA and DF

using median-of-k method as well as split-and-add, but the error was worse when compared

with using a single instance for both PCSA and DF (giving the entire memory to stochastic

averaging). In Figure 2.2, using a single instance implies that only stochastic averaging is used

over a fixed number of bit vectors determined from the space budget.

LC performs best when the entire space is given to a single instance. We tried using

independent smaller bit vectors, followed by accuracy boosting, but this mostly led to invalid

results. In case of median-of-k, the load factor of each smaller bit vector increased drastically,

and the instances often failed to produce any reasonable estimates.
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Figure 2.2: Comparison of Accuracy Boosting methods using Network Trace (space cost:

1000KB, window size: 45 minutes)

2.4.5 Evaluation of Algorithms

We implemented each algorithm using the best hash function (MurmurHash), and also the

best accuracy boosting method specific to the algorithm. We ran experiments over all the 8

datasets for different space budget keeping the time-based sliding window fixed at 45 minutes.

We also ran experiments over the 8 datasets for varying window size, keeping the space budget

fixed at 1000KB. We have shown results for only 5 of the 8 datasets due to space constraint.

We study the performance of algorithms for 1) different space budgets given a fixed window size
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(shown in Figures 2.3, 2.5, 2.4, 2.6, and 2.7).and 2) different window sizes given a fixed space

budget (shown in Figures 2.9 and 2.10). We find the median of 10 runs of each experiment to

get the corresponding data point to obtain a consistent graph plot.

2.4.5.1 Accuracy

We observe that for a fixed window size, the accuracy of RW and PCSA are the best for

small space budgets. As the allocated space is increased, the accuracy of RW becomes better

than that of the other algorithms. We observe that as space increases, improvement in accuracy

is the most significant in RW.

LC does not produce any result below a space threshold which depends on the number of

distinct elements within the sliding window. Given a window size of 45 minutes, LC yields

result for a minimum space of 1700KB for the Zipfian dataset. It does not produce a valid

result for other datasets for a space budget as large as 2MB. Amongst the other algorithms,

we observe that PCSA and RW algorithm produces the most accurate result. As we increase

the space budget, RW outperforms PCSA in terms of accuracy. According to the figures, DF

algorithm is the least accurate algorithm.

In the study by [60], LC emerged as the most accurate algorithm for distinct counting for

a given space budget, beating out PCSA and other alternatives. Our conclusions are different

from those of [60], for the following reasons. First, note that their evaluation was for a different

problem, that of distinct counting over an infinite window. The algorithms in [60] used a bit

vector as a data structure to implement LC, which can accommodate a large number of distinct

elements before the load factor gets too large, while we need to have a vector of timestamps

to implement LC, which takes much more space (we used 32 bit timestamps). Further, the

number of distinct elements in the dataset used in [60] is approximately 2 million, while the

number of distinct elements in our datasets is much larger, leading to a higher load factor for

the same memory allocated for LC. Since the accuracy of LC is very dependent on the number

of distinct elements in the dataset, it is no longer the most accurate algorithm in our study,

except for the case when the allocated memory is relatively large.



www.manaraa.com

27

RW and PCSA are the two most accurate algorithms so we use Figure 2.8 to show the

variation in the results obtained for RW and PCSA respectively over 10 different runs. These

figures show the minimum, maximum, median and first and third quartile value of average

relative error obtained for RW and PCSA. From the figures, it is evident that these algorithms

consistently perform well and that other than a few outliers, the variation in the average relative

error is small (less than 1%). Due to a constraint in space, we have not added the graph for

BJKST1 but the variation in BJKST1 is similar to RW and PCSA. We have also shown the

variation in the results for DF algorithm over 10 runs in Figure 2.8. We observe that there is

a large variation in the results for DF for small space budget which gets better as the space

allocated to the algorithm is increased.

We also performed an evaluation of the effect of the window size on the accuracy of each

algorithms for a fixed space budget of 1000KB(shown in Figures 2.9 and 2.10). We conclude

from the figures that there is no clear correlation between the window size and the accuracy of

algorithms. Also, the runtime of the algorithms do not seem to be affected when the window

size is varied. The runtime of the algorithms do not vary with the window size because the

total size of the dataset remains the same even when we vary the size of the window over which

aggregation is performed. Though we have shown results for only the Bigrams dataset and the

Friendster graph, we obtained the same result for the rest of the dataset.

2.4.5.2 Runtime

The running time of LC is the smallest followed by PCSA and DF. These algorithms are

faster than RW (approximately 2-4 times) and BJKST1 (approximately 4-5 times), as shown

in Figures 2.3, 2.4, 2.5, 2.6, 2.7. We observed that on increasing the space allotted to each

algorithm, the runtime for each algorithm increases only slightly. While all the algorithms that

we considered have O(1) (amortized) processing time per item, the processing times of these

algorithms are different since PCSA, DF, and LC use very simple data structures (arrays) while

RW and BJKST1 use a hash table as well as a list, which are relatively more expensive than

an array.
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We ran an experiment to compare the runtime performance of an array, an STL list, an

STL unordered map (a hashmap with O(1) lookup time), and an STL map (an ordered map

with O(log (n)) lookup time, where n is the size of a dataset). We observed that the total

time taken to insert 100000 elements (elements inserted were valued 1 to 100000) into an array

is 1.3 milliseconds whereas a simple insertion of elements in STL unordered map, STL map,

and STL list are 14 milliseconds, 41 milliseconds and 6.7 milliseconds respectively. Further, we

performed an additional experiment to measure the total time taken by STL unordered and

ordered map to simultaneously insert and delete each input so that at no point in time, the

map size is greater than 1. The runtime for the unordered and ordered map for this experiment

were 20 milliseconds and 25 milliseconds respectively.

For RW and BJKST1 algorithms, there is an insertion in both map and list for each incoming

element, whereas the deletion of elements from these datastructures occur at the end of every

time unit. PCSA and DF algorithms require a simple insertion in an array for each incoming

element. Considering that the number of insertions in array for PCSA and DF are the same

as the number of insertions in both map and list for RW and BJKST1, in addition to the

deletion of expired elements from RW and BJKST1 (note that PCSA and DF does not require

to update the arrays for expired elements which leads to the significantly high query time

for these algorithms), the difference in efficiency of list, map and array is responsible for the

difference in algorithm runtimes.
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Figure 2.3: Dependence on Space for Network Trace with a window size of 45 min
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Figure 2.4: Dependence on Space for Zipfian data with a window size of 45 min
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Figure 2.5: Dependence on Space for Uniform Random dataset with a window size of 45 min

2.4.5.3 Query Frequency

The rate of queries (relative to the rate of updates) has an important bearing on the

performance of an algorithm. We can think of two extremes here: in one extreme is continuous

monitoring, where there is a query after each update, and in the other extreme there is a query

only at the end of observation. We use the term “query ratio” to mean the ratio between the

number of updates and the number of queries for determining the number of distinct elements

in the window.

While the performance of RW and BJKST1 are not affected much by the query ratio,

LC, PCSA and DF algorithm is significantly affected. In particular, answering a query using

these algorithms requires a scan of the entire vector, which is very expensive. As described

in Section 2.3.1, we also implemented a version of LC optimized for frequent queries, which

we call LC2. We call the version that is not optimized for frequent queries as LC1. We could

show the result pertaining to LC only for the zipfian dataset. Other datasets need space much
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Figure 2.6: Dependence on Space for Bigram dataset with a window size of 45 min
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Figure 2.7: Dependence on Space for Friendster Graph data with a window size of 45 min

larger than 3MB for producing a valid result for LC1 and LC2. We ran experiments over all the

datasets using a space budget of 3MB and a window size of 45 minutes. Smaller space allocation

(< 3MB) did not work for LC2 even for the zipfian dataset as the data structure used by LC2

requires large space. The X-axis represents the rate at which a query is posed. For instance,

the x-value, 10000, implies that a query is made every 10000 updates. Figure 2.11 shows a
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(a) Average Relative Error vs Window Size (b) Worst Relative Error vs Window Size (c) Runtime vs Window Size

Figure 2.9: Dependence on Window Size for Bigram dataset for a fixed space budget of 1000KB
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Figure 2.10: Dependence on Window Size for Friendster graph data for a fixed space budget

of 1000KB

significant increase in the runtime of LC1 as the rate of querying increases. LC2 performs

consistently, without being affected by the rate of querying, similar to the other algorithms.

However this runtime of LC2 comes at the expense of accuracy, since additional space is taken

up by the data structures for improving the query time. This also implies that LC2 would

require much larger space for producing a valid result for a dataset.

The Figure 2.11 also show that the runtime of PCSA and DF is significantly large when

query ratio is close to 1. However, the runtime of PCSA and DF, similar to LC1, reduces

quickly with a decrease in query rate. The results from the Friendster graph and the network

trace imply the same but we have excluded it from the paper due to space constraint.

The runtime of LC1, PCSA and DF algorithms increase drastically with query rate. This

is because these algorithms require to perform a linear scan on the vector maintained by them

so as to find the information that is required to compute the distinct count.
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Figure 2.11: Dependence on rate of Query for a space cost 3000KB and a window size of 45

min

2.5 Conclusion

We presented a detailed experimental evaluation of algorithms for distinct counting over a

sliding window. We considered alternatives for different aspects of an implementation, including

the basic algorithm, the hash function, the method for boosting accuracy, and the impact of

query/update ratio. While there is no clear “best” method that works better than the rest

under all situations, our experiments bring out a few combinations that work close to the best.

For a given space budget, if the average relative error is the most important criterion,

then using a single instance of Randomized Wave algorithm with the Murmurhash function is

close to the best in most situations. If execution time is the most important criterion, then

for the scenario where the ratio of number of updates to the number of queries is low, PCSA

using Murmurhash performs close to the fastest under most situations. However, if the ratio of

updates to queries decreases, then the runtimes of PCSA and DF increase, and when this ratio

is small (less than 100, in many cases), RW and BJKST1 perform better in terms of runtime.

In such cases, RW is clearly the best option, both in terms of accuracy as well as runtime.

Overall, we observe that for a given space budget, random sampling-based schemes such

as RW perform better than bitmap based schemes such as LC. This is because bitmap-based

schemes such as PCSA and LC become more expensive space-wise when a timestamp is added

to each bit in the vector, while a random sampling-based algorithm such as RW is not affected

as much since it already stores the actual element identifiers in the sample, and adding a

timestamp to the identifier does not increase the overhead by very much.
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CHAPTER 3. MONITORING PERSISTENT ITEMS IN THE UNION

OF DISTRIBUTED STREAMS

We address the identification of a feature called a “persistent item” from a massive dis-

tributed data stream. A persistent item is one that occurs regularly in the stream, but does

not necessarily contribute significantly to the volume of the stream. Let n denote the total

number of timeslots in a stream R. The persistence of an item d, denoted p(d), is defined as

the number of distinct timeslots where d appeared in a stream. Clearly, 0 ≤ p(d) ≤ n. Note

that multiple occurrences of the same item in the same timeslot do not contribute repeatedly

to the persistence of the item. For a parameter 0 ≤ α < 1, an α-persistent item is defined as

an item whose persistence is at least αn. The above metric was used in [41] in the context of

botnet traffic detection.

A persistent item in a distributed set up is defined as follows. Suppose time is divided into

“timeslots”1 Each local site observes a stream of tuples (d, t), where d is an item identifier, and

t the timeslot at which d appeared. The persistence of an item d, denoted p(d), in a distributed

set up is defined as the number of distinct time slots where d appeared in
⋃k
i=1Ri. Clearly,

0 ≤ p(d) ≤ n. Note that multiple occurrences of the same item in the same timeslot, whether

at the same site or at different sites, do not contribute repeatedly to the persistence of the item.

An item can be highly persistent in the distributed stream without being persistent in any

single local stream. Consider the following situation where a particular destination IP address

was present in every timeslot from 1 till n, but kept moving from one local site to another in

different timeslots, in order to evade detection. The persistence of this destination IP address

in any local stream Ri is only 1/k, but its overall persistence in the distributed stream is

1We assume that time is loosely synchronized between the different sites, so that the different sites agree
on which “timeslot” is currently in play. Since timeslots are typically of the order of minutes or more [41], the
clocks only need to be synchronized to within a few seconds or more.
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100%. Identifying persistent items in a distributed stream can help detect such coordinated

and distributed malicious behavior.

A persistent item is different from a “frequent item” in the stream (often known as a

“heavy-hitter”). A frequent item is one that appears with a high frequency in the stream, and

hence contribute significantly to the volume of the stream. A persistent item need not be a

frequent item. For instance, consider an item that occurs exactly once in every timeslot, so

that its persistence is 100 percent. The frequency of this item is very low, so that it will not

be considered a frequent item in the stream. Similarly, a frequent item may not be persistent

either; consider for example an item that occurs in a bursty manner within a timeslot, but

never reoccurs within other timeslots. While this item contributes significantly to the volume

of the stream, its persistence is very low.

3.1 Goal

The goal of this work is to devise an algorithm for identifying persistent items, which min-

imizes (1) the communication between the processors and (2) the memory footprint of the

algorithm, both per node, and overall. While memory has always been a primary concern in

data stream algorithm design in a centralized setting, in a distributed stream, the communi-

cation cost is even more important [37, 38, 20, 76, 66, 88], hence communication will be our

primary metric.

We first note that any algorithm for exactly identifying persistent items and none other

than the persistent items must necessarily incur a large communication cost. In the worst

case, this would need communication of the order of the total stream size. Hence, we consider

approximate identification of persistent items, with a provable guarantee on the quality of

approximation.

Problem Definition: Given persistence threshold α, 0 < α ≤ 1, approximation param-

eter ε, 0 < ε < α, error probability δ ∈ [0, 1], the task is to design a low communication cost

and space efficient algorithm that identifies α-persistent items from
⋃k
i=1Ri, with the following

properties:
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• Low False Negative: If an item d has a persistence p(d) ≥ αn, then d is identified as

α-persistent, with probability at least (1− δ).

• Low False Positive: If an item d has a persistence p(d) < (α − ε)n, d is not reported as

α-persistent, with probability at least (1− δ).

We assume a synchronous communication model, where the system progresses in rounds.

In each round, each site can observe one element (or none), send a message to the coordinator,

and receive a response from the coordinator. The coordinator may receive up to k messages in

a round, and respond to each of them in the same round. This model is essentially identical

to the model assumed in previous work on distributed stream monitoring [20]. Our results

do not change if the sites communicated at the end of each timeslot, rather than at the end

of observing each element. The sizes of the different local streams at the sites, their order of

arrival, and the interleaving of the arrivals at different sites, can all be arbitrary. The algorithm

cannot make any assumption about these.

We consider both the infinite and sliding window models for the identification of persistent

items.

3.2 Contribution

We present the first communication-efficient algorithms for tracking persistent items over

the union of multiple distributed streams, with approximation parameter ε and error probability

δ.

3.2.1 Infinite Window Algorithm

We first present an algorithm for the setting where the data of interest is the union of all

items over all the k streams observed so far. Let n denote the total number of timeslots so far.

The expected space complexity over all sites is O

(
kα2 log

(
log (1/δ)

2δ

)
P

ε3n

)
and the expected number

of bytes transmitted across all sites is O

(
kα2 log

(
log (1/δ)

2δ

)
P

ε3n

)
bytes, where P =

∑
d∈M p(d),
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where M is the set of all distinct items observed in the stream, i.e. P is the sum of persistence

values of all distinct items observed in the union of all streams.

3.2.2 Sliding Window Algorithm

Next we consider the setting where the data of interest is the union of data observed by all

the k streams during the n most recent timeslots, and we present an algorithm for identifying

persistent items within this data. The expected space complexity of our distributed algorithm

over all sites is O

(
kα2 log

(
log (1/δ)

2δ

)
P

ε3n

)
and the expected number of communication bytes over

all sites is O

(
kα2 log

(
log (1/δ)

2δ

)
P

ε3n

)
bytes, where P is the sum of persistence values within the

last n time slots, of all the distinct items seen in all the streams.

3.2.3 Simulations

We simulated our algorithm using real-world network trace data as well as synthetic data.

These simulations show that our algorithm tracks α-persistent items with the observed guar-

antees, and that the communication and space overhead are much smaller than distributed

implementation of existing algorithms.

3.3 Related Work

Prior work on identifying persistent items in a stream has considered the centralized case.

This includes work by Giroire et al. [41], who track persistent items in a centralized stream by

exactly computing the persistence of each distinct item in the stream, and an improved small

space approximation algorithm by Lahiri et al. [54].

A frequent item or a “heavy hitter” in a stream is one whose frequency in the stream

is significant when compared with the volume of the stream. There is much prior work on

identifying frequent items or heavy hitters from a data stream, including [17, 62, 57, 61, 73,

77, 55]. As discussed earlier, a frequent item may not be persistent, and a persistent item

in not necessarily frequent either. Frequent item identification algorithms that are based on

“sketches”, such as the Count Sketch [14] and the Count-Min Sketch [19], can be implemented
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in a distributed manner. These algorithms maintain multiple counters, each of which is the

sum of many random variables. The sketch for the union of several streams is simply the

sum of the sketches over all the streams. However, adapting these algorithms for the case of

persistent items does not seem to be easy since these sketches count the number of occurrences

(frequency) as opposed to the number of occurrences in distinct timeslots (persistence).

3.4 Solution Overview

A straightforward approach to tracking persistent items is as follows. Every site i maintains

a data structure Si, which contains the set of all distinct timeslots that each item has appeared

in stream Ri. Note that this requires storing a set of up to n elements for each distinct item

that has appeared in Ri. Upon a query, each site i sends Si to the coordinator, who can exactly

compute the persistence of the item in the distributed stream, and return only those items that

has persistence of at least αn. While this requires no coordination among the sites prior to

the query, the total communication required at the time of the query is prohibitive, since it

communicates up to Θ(n) bytes per item, per site, which can be very large when the number

of distinct items is large. Clearly, this approach is expensive in terms of space required per site

as well.

A centralized small-space streaming algorithm for persistent items such as the one in [54]

can be used to track persistent items in each individual stream, but cannot be directly used

in a distributed context. The reason is that the algorithm in [54] depends on using a simple

counter at each site to track the number of slots an item has appeared in. In the distributed

case, overlapping occurrences of the same item in the same timeslot across different sites should

still be discounted. Hence, a simple extension of the centralized algorithm will not work here.

In our approach, we first reduce the number of items that are tracked using a hash-based

random sampler, similar to the one used in the centralized streaming algorithm in [54]. This

sampler is used to (with high probability) selectively maintain state for only those items whose

persistence crosses a given threshold. The threshold is chosen such that an α-persistent item is

very likely to be tracked. Once tracking state has been established for an item, we still need to

maintain its persistence as more copies of this item arrive. We could potentially do this through
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maintaining for each such item, a list of timeslots where the item has appeared. When a query

for persistent items is posed, the lists for different tracked items is sent to the coordinator,

who computes the union of different lists across all the sites, to compute the persistence of

the tracked item. However, this naive approach leads to a high memory requirement and

communication cost.

We reduce the memory and communication cost through using a distributed distinct count-

ing algorithm [30, 47, 3, 13, 37, 6, 87, 51] to maintain, in a coordinated manner, a count

of distinct timeslots of occurrence for each tracked item across all the sites. A distributed

distinct counting algorithm estimates the number of distinct elements in the union of mul-

tiple distributed streams. More precisely, if dist(R) is the number of distinct elements in

a distributed stream R, then given a relative error 0 < γ < 1 and an error probability

0 < υ < 1, a (γ, υ)-approximate distinct counting algorithm returns an estimate X such

that Pr[|dist(R) −X| > γ.dist(R)] ≤ υ. The algorithm that we use from [37, 6], is practical,

and has an overall space requirement of O
(
log 1/υ
γ2

)
words.

With our approach, there are two sources of error in the estimated persistence of an item.

(1) We do not track the persistence of each item, but only those which pass through the sampler.

While this results in reduced communication when compared with tracking the persistence of

each item, it also results in an error in the measured persistence of each item, even for those

items that are tracked. (2) After tracking state has been established for an item, the overall

persistence in the distributed stream in forthcoming timeslots is only computed approximately.

Our analysis ensures that the combined error from these two sources does not exceed the de-

sired threshold. To achieve this, the total error budget is divided among the two sources of

error such that the communication cost is minimized and the final approximation guarantees

are achieved. Our analysis for the infinite window case the sliding window case are described

in Sections 3.5 and 3.6 respectively.
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3.5 Infinite Window

We now present an algorithm for the case of an infinite window, i.e. when the data of

interest is the union of all items from the beginning of time, that arrived across all streams.

Intuition: To reduce space and communication, the first step is to avoid tracking every

item, especially items with a low value of persistence. While tracking items with a low persis-

tence cannot be completely avoided, it can be reduced through sampling. Sites 1 through k

share a common hash function h : ([1,m]× [1, n])→ (0, 1). For two tuples (d1, t1) and (d2, t2)

that are unequal either in one attribute or both, h(d1, t1) and h(d2, t2) are independent random

values chosen uniformly at random from the interval of real numbers (0, 1).

Each site i maintains state for a subset of items that have arrived so far. When an item

(d, t) arrives in Ri, if d is already being tracked by i, then the state corresponding to d is

updated by adding t to the set of time slots that d has appeared in. If d is not being tracked

by i, then tracking state is established for d if h(d, t) < τ (for a value τ to be decided), and

a message is sent to all sites to start tracking d. Clearly, if an item d appears in time slot t,

tracking state is established for d with probability τ . We note the following.

• Multiple occurrences of d within the same time slot t do not increase the probability of

d being tracked.

• A low-persistence item d which appears only in a few distinct time slots is not likely to be

tracked. On the other hand, a high-persistence item d′ which appeared in many distinct

slots will be tracked with a high probability.

• Since the same hash function h is shared by all sites, the result after distributed occur-

rences of d is the same as if d was being observed by the same site.

Once tracking state has been established for an item d, future occurrences of d in subsequent

time slots are treated without needing further communication among the sites. A challenge here

is that even with state maintained at different nodes for an item d, it is still non-trivial to track

the number of occurrences of d in distinct time slots. For this purpose, we use a distributed

distinct counter, from [37]. Equivalently, we could use other algorithms for distinct counting
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that can be implemented in a distributed setting, such as the one by Bar-Yossef et al. [6].

We use the one in [37] because it is simple and gives very good practical performance. The

accuracy and error probability of this distinct counter influences the overall space complexity of

our algorithm. Before we present the formal algorithm description, we present the guarantees

expected from the distinct counter.

When a query is posed for the set of persistent items, the coordinator combines the estimates

of all the distributed distinct counters to compute an estimate of the persistence of each item

being tracked. This estimate is used to decide whether or not an item is persistent. There

are two sources of error in this estimator: (1) the error due to sampling, before the item

starts being tracked, and (2) the error due to the approximate distinct counter for the item

which is already being tracked. We first present the guarantees provided by a distributed

distinct counting algorithm. For a relative error parameter 0 < γ < 1 and an error probability

parameter 0 < υ < 1, a distinct counter Dυγ takes as input a stream of updates S and maintains

an estimate of dist(S), the number of distinct items in S.

Theorem 1 ([37]). There is a distinct counter Dυγ that takes space O
(
log 1/υ
γ2

)
words of space,

and whenever a query is asked for dist(S), returns an estimate X such that Pr[|X−dist(S)| >

γ · dist(S)] ≤ υ, for 0 < γ < 1 and 0 < υ < 1. This distinct counter can handle distributed

updates, and the distributed state can be combined together at the end of observation.

Note that we express the space complexity above in terms of the number of words, assuming

that each item identifier and timestamp can be stored in a constant number of words.

Algorithm Description: The inputs to our algorithm are: 1) m - domain size of the

identifiers, 2) n - total number of timeslots in the distributed stream, 3) α - persistence thresh-

old, 4) ε - approximation parameter, and 5) δ - error probability. The distributed algorithm

has three parts: Algorithm 1 defines the input parameter, and describes the initialization of

the datastructures and global variables used, Algorithm 2 describes the algorithm at each local

site, and Algorithm 3 describes the algorithm at the coordinator node C.

Each site i maintains a sketch Si for stream Ri seen so far, comprising of tuples of the

form (d,Dε2δ2 [i](d)). Here, d is an item ID, and Dε2δ2 [i](d) is the distinct counting datastructure
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maintained for estimating the number of distinct time slots when the item d appeared. The

distinct counting data structure is maintained using the distributed distinct counting algorithm

with approximation parameter ε2 and error probability δ2. Here, ε2 and δ2 are parameters whose

values are determined based on optimizing communication cost while obeying the correctness

constraints

The coordinator C maintains a sketch S which has tuples of the form (d, td) where d is the

item ID and td is the time when the item d was first tracked in the distributed stream. When

an item (d, t) arrives at site i in timeslot t, then the algorithm first looks into Si to check if

d is being tracked (Algo 2: line 2). If not, then (d, t) is passed through the hash function h.

The algorithm starts tracking d if h(d, t) < τ , where τ = 2/(ε1n) and ε1 = cεε (Algo 2: line

3), where 0 < cε < 1 is a constant; note this happens with probability τ . Site i communicates

with the other sites (Algo 2: lines 4-5) and the coordinator C (Algo 2: line 6) to inform them

about the newly tracked item. Once site i starts tracking the item d, it makes an entry of the

form (d,Dε2δ2) in Si and starts maintaining a distinct count datastructure Dε2δ2 [i](d) for item d

(Algo 2: line 8). Once the item is tracked, with every appearance of the item in a new timeslot,

Dε2δ2 [i](d) is updated using the distinct counting algorithm (Algo 2: line 10).

If site i receives information about a newly tracked item d from some other site, it starts

tracking d and creates a new local entry (d,Dε2δ2) in Si (Algo 2: lines 12-15). It then updates

(d,Dε2δ2) in Si for d with every appearance of item d in a new timeslot in site i (Algo 2: line 8).

When the coordinator receives information about a newly tracked item d from any of the sites,

it makes a new entry (d, td) in S (Algo 3: line 1).

When a query is made to the coordinator C, for each tracked item d ∈ S, it takes a union of

the corresponding distinct count data structure (d,Dε2δ2)[j](d) across all sites as per the distinct

counting algorithm to estimate the number of distinct slots n̂d, where item d appeared in

the distributed stream since it was tracked (Algo 3: lines 3-6). While we do not know how

many distinct slots d may have appeared in before it was first tracked, we can see this number

is a geometric random variable X with parameter τ ; we estimate the value of X using its

expectation. We estimate the persistence of d, equal to the total number of distinct slots where

d appeared in the entire distributed stream, as p̂d as n̂d + E(X) = n̂d + 1/τ (Algo 3: line 10).
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Also, in order to optimize our results, we compute p̂d as n̂d + td for the condition (1/τ) > td,

(Algo 3: lines 7-8).

Algorithm 1: Infinite Window : Initialization

Input: m - Domain Size of identifiers; n - Total no. of time slots; α - persistence

threshold; ε - error parameter; δ - error probability

1 Hash function h : ([1,m]× [1, n])→ (0, 1)

2 Approximation Parameters: ε1 ← cεε, ε2 ← (1− cε)ε/4α // 0 < cε < 1 is a

constant

3 Error Probability: δ2 = cδδ // 0 < cδ ≤ min
(

1, 2
log(1/δ)

)
is a constant

4 Filter parameter τ ← 2
ε1n

5 Threshold T ← (1− ε2)(αn− 1
τ + 1)

6 S ← ∅
7 for i = 1, 2, .., k do

8 Si ← ∅

Algorithm 2: Infinite Window: Algorithm at node i

1 On receiving item (d, t) at node i

2 if (d /∈ Si) then

3 if h(d, t) < τ) then

4 for every node j = 1 . . . k, j 6= i do

5 Send ”Start Tracking (d, t)” to j

6 Send (d, t) to the coordinator

7 Si ← Si ∪ {(d,Dε2δ2 [i](d))}
8 Insert t into Dε2δ2 [i](d)

9 else // if d ∈ Si
10 Insert t into Dε2δ2 [i](d)

11 On receiving message “Start Tracking (d, t)”

12 // Create a new data structure tracking d

13 Si ← Si ∪ {(d,Dε2δ2 [i](d))}
14 Insert t into Dε2δ2 [i](d)

3.5.1 Infinite Window : Correctness

Let G(τ) be the geometric random variable with parameter τ . Let p(d) denote the persis-

tence of item d, and nd denote the number of distinct slots where d appeared in R after (and

including) the time slot when the algorithm started tracking d.
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Algorithm 3: Infinite Window: Algorithm at the coordinator C.

1 Upon receiving (d, td): Insert (d, td) into S

2 Upon receiving a query for the set of Persistent Items:

3 for each (d, td) ∈ S do

4 for i = 0, 1, ..., k − 1 do

5 Compute the union of Dδ2
ε2 [i](d) data structures over all sites i.

6 Let n̂d be the estimate of the distinct count over this union.

7 if td < (1/τ) then

8 p̂(d)← n̂d + td

9 else

10 p̂(d)← n̂d + 1
τ

11 if p̂(d) ≥ T then

12 Report d as α-persistent

Lemma 1. If G(τ) ≤ p(d), then nd = p(d)−G(τ) + 1, else nd = 0.

Proof. Let the distinct time slots that d appears in distributed stream be t1, t2, . . ., in increasing

order. d is not tracked until we reach a time slot ti such that h(d, ti) < τ . The number of time

slots required for this to occur is G(τ). Note this is true even though the different sites are

observing the tuples in a distributed manner, since their decisions are based on the output of

a hash function on (d, t). The expression for nd follows.

Lemma 2. False Negative: If an item d is α-persistent, then the probability that it is not

reported by the coordinator in Algorithm 3 is at most
(
e−2 + 2δ

log (1/δ)

)
.

Proof. Consider an α-persistent item d. Let A denote the event that d is not reported. Let

p̂(d) be the estimate of its persistence at the end of observation. Also, let n̂d be an estimate of

nd, the number of distinct time slots where d appeared in R after being tracked. n̂d is obtained

from the union of the distinct count datastructures over the k sites. Per the above algorithm,

p̂(d) = n̂d + 1/τ , and d is not reported if p̂(d) < T . Consider that T = (1 − ε2)(α + 1 − 1/τ)

and δ2 = cδδ where cδ ≤ 2
log (1/δ) .

Pr [A] = Pr [p̂(d) < T ] = Pr

[
n̂d <

(
T − 1

τ

)]
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Let B denote the event (1− ε2)nd ≤ n̂d. We have the following:

Pr[A] = Pr[A|B] Pr[B] + Pr[A|B̄] Pr[B̄] ≤ Pr[A|B] + Pr[B̄] (3.1)

Pr[A|B] = Pr

[
n̂d <

(
T − 1

τ

) ∣∣∣(1− ε2)nd ≤ n̂d]
≤ Pr

[
(1− ε2)nd <

(
T − 1

τ

)]
= Pr

[
p(d)−G(τ) + 1 <

(T − 1/τ)

(1− ε2)

]
using Lemma 1

= Pr

[
G(τ) > p(d) + 1− T

(1− ε2)
+

1

(1− ε2)τ

]

≤ Pr

[
G(τ) > αn+ 1−

(
αn+ 1− 1

τ

)
+

1

(1− ε2)τ

]
substituting T and given p(d) ≥ αn

≤ Pr

[
G(τ) >

2

τ

]
= (1− τ)

2
τ

≤ e−2 since (1− τ)θ ≤ e−τθ

The probability of B̄ depends on the guarantee given by the distinct counter Dδ2ε2 . Note

that the number of insertions into the distinct counter is nd, and the estimate returned by the

distinct counter is n̂d. Using Theorem 1, we have: Pr[(1− ε2)nd ≤ n̂d ≤ (1 + ε2)nd] ≥ (1− δ2).

Hence,

Pr[B̄] = Pr[n̂d < (1− ε2)nd]

≤ Pr[n̂d < (1− ε2)nd] + Pr[n̂d > (1 + ε2)nd]

≤ δ2 ≤ 2δ

log (1/δ)
given δ2 = cδδ ≤ 2δ

log (1/δ)

Using these back in Equation 3.1, we get the desired result.

Lemma 3. False Positives: An item d with persistence p(d) < (α − ε)n is reported by the

coordinator in Algorithm 3 with probability at most 2δ
log (1/δ) .

Proof. Consider an item d with persistence p(d) < (α − ε)n. Let A denote the event that

d is reported as being α-persistent. If p̂(d) is the estimate of persistence of d at the end of

observation, then p̂(d) > T . Also, per the algorithm, p̂(d) = n̂d + 1/τ .
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Pr[A] = Pr [p̂(d) > T ] = Pr

[
n̂d >

(
T − 1

τ

)]
Let B denote the event n̂d ≤ (1 + ε2)nd. If T = (1 − ε2)

(
αn+ 1− 1

τ

)
, ε1 = cεε, and

ε2 = ε(1−cε)
4α , where, cε is a constant s.t. 0 < cε < 1 then,

Pr[A|B] = Pr

[
n̂d > T − 1

τ

∣∣∣n̂d ≤ (1 + ε2)nd

]
≤ Pr

[
(1 + ε2)nd ≥ T −

1

τ

]
= Pr

[
p(d)−G(τ) + 1 ≥

(
1− ε2
1 + ε2

)(
αn+ 1− 1

τ

)
− 1

(1 + ε2)τ

]
substituting T and using Lemma 1

= Pr

[
G(τ) ≤ p(d) + 1−

(
1− ε2
1 + ε2

)(
αn+ 1− 1

τ

)
+

1

(1 + ε2)τ

]
≤ Pr

[
G(τ) ≤ (αn− εn) + 1−

(
1− ε2
1 + ε2

)
(αn+ 1) +

2− ε2
(1 + ε2)τ

]
given p(d) < (α− ε)n

≤ Pr

[
G(τ) ≤ (αn− εn) + 1− (1− 2ε2)(αn+ 1) +

2

τ

]
as, (1− 2ε2) < (1− ε2)/(1 + ε2)

= Pr

[
G(τ) ≤ 2ε2αn+ 2ε2 +

2

τ
− εn

]
≤ Pr

[
G(τ) ≤ 4ε2αn+ ε1n− εn

]
= 0 using τ = 2/ε1n, and, (2ε2αn+ 2ε2 ≤ 4ε2αn)

Using Theorem 1, we have: Pr[(1− ε2)nd ≤ n̂d ≤ (1 + ε2)nd] ≥ (1− δ2) Hence,

Pr[B̄] = Pr[n̂d > (1 + ε2)nd]

≤ Pr[n̂d < (1− ε2)nd] + Pr[n̂d > (1 + ε2)nd]

≤ δ2 ≤ 2δ

log (1/δ)

Using the relation Pr[A] ≤ Pr[A|B] + Pr[B̄], we get the desired result. We obtain that for

cε = 1/3, the space cost and the communication cost of this algorithm is optimized.

Theorem 2. By running at least log δ
log (e−2+cδδ)

parallel instances of the algorithm, we get the

following guarantee:

1. An item d with persistence p(d) ≥ (αn) is reported as α-persistent with probability at least

1− δ.
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2. An item d with persistence p(d) < (α − ε)n is not reported as persistent with probability

at least 1− δ.

Proof. Let θ = log δ
log (e−2+cδδ)

. We return the union of all persistent items returned by all the

parallel instances. For an α-persistent item d, the probability that d is not reported is equal to

the probability that it is not reported by any of the θ instances. This probability is no more

than (e−2 + cδδ)
θ
, which is bounded by δ (where 0 < cδ ≤ 2

log (1/δ)).

Consider an item d with persistence less than (α− ε)n. The probability that d is reported

is the probability that d is reported by at least one of the θ parallel instances. Using the

union bound, this probability is no more than 2δθ
log (1/δ) . Upon substituting θ, we get the desired

result.

3.5.2 Infinite Window: Complexity

We present an analysis of the communication and space complexity of the algorithm for an

infinite window. Let P be the sum of the persistence of all the distinct items in the distributed

stream, n be the total number of time slots in the stream. Recall that k is the number of sites.

Theorem 3. The expected space complexity of the distributed algorithm per site is O

(
α2 log

(
log (1/δ)

2δ

)
P

ε3n

)
,

and the expected space complexity over all sites is O

(
kα2 log

(
log (1/δ)

2δ

)
P

ε3n

)
Proof. The space complexity of tracking a single item is equal to the cost of an approximate

distinct count data structure Dδ2ε2 , for maintaining the number of distinct time slots for the

item. Let Z(d) be a random variable for item d such that Z(d) = 1 if item d is tracked, else

Z(d) = 0.

Pr[Z(d) = 1] = 1− Pr[Z(d) = 0] = 1− (1− τ)p(d)

≤ 1− e−2τp(d) using Taylor’s expansion

≤ 2τp(d) ≤ 1− (1− 2τp(d)) ≤ 2τp(d)
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We know that space taken by distinct count operator for each item d at each site is

O
(
log(1/δ2)

ε22

)
(Theorem 1). The expected space taken by an item d per site is:

Pr[Z(d) = 1]

(
log (1/δ2)

ε22

)
≤ 2τp(d) log(1/δ2)

ε22
=

4p(d) log(1/δ2)

ε22ε1n

= O

(
p(d) log(1/δ2)α

2

ε3n

)
since ε2 = O

( ε
α

)
; ε1 = O(ε); δ2 = O(δ)

≤ O

p(d) log
(
log (1/δ)

2δ

)
α2

ε3n

 given δ2 = cδδ ≤
2δ

log (1/δ)

Hence, total expected space taken by the algorithm per site is:

= O

∑
d

p(d) log
(
log (1/δ)

2δ

)
α2

ε3n

 = O

α2 log
(
log (1/δ)

2δ

)
P

ε3n


The total space over the entire distributed algorithm is k times the space cost of each

site.

Theorem 4. Communication: The expected communication complexity of the distributed

algorithm taken over all sites is O

(
kα2 log

(
log (1/δ)

2δ

)
P

ε3n

)
bytes.

Proof. For each item that is tracked, the algorithm incurs O(k) messages to begin tracking

the item. Finally, in order to identify persistent items, it is necessary to have another round

of communication among all the sites and the coordinator. The total number of messages

exchanged is thus O(kN) where N is the number of items that are tracked. Since we know that

E [E] = O
(
P
εn

)
(see the proof in Theorem 3), the expected number of messages communicated

over all sites is O(kPεn ).

If we consider the number of bytes communicated, we find that each item leads to a

communication of O(α
2 log(1/δ2)

ε2
) bytes, due to the distinct count data structure. Hence, the

expected number of message bytes communicated between the sites and the coordinator is

O

(
kα2 log

(
log (1/δ)

2δ

)
P

ε3n

)

3.6 Sliding Window

At time slot c, the current window of size n is defined as the set of all events within the n

most recent time slots, i.e. slots (c−n+ 1) to c, both endpoints inclusive. An item d is defined
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to be α-persistent in a sliding window of size n if it occurred in at least αn distinct time slots

within the current window. We now present a distributed algorithm for approximately tracking

the set of all α-persistent items within the sliding window of size n.

Intuition: The sliding window algorithm uses the same sampling technique as for the

infinite window case, and if a site decides to track an item, it communicates with the other

sites, following which each site sets up local state for this item, and future occurrences of this

item are handled locally without requiring further communication. The main challenge with

the sliding window case is that as future time slots arrive, old occurrences go out of scope

and have to be removed from consideration from the data structures. At each site i, Si is

continuously updated to discard expired time slots for each item.

Unlike the algorithm for infinite window, for each item d that is tracked, the error due to

sampling is a concern only as long as the starting time slot for tracking d, i.e. td, does not

expire from the sliding window. After slot td + n, a summary of all subsequent occurrences of

d are tracked approximately by the data structure. Thus the query processing will distinguish

between the cases when the query is made after td + n (Algo 6: lines 11-13), and when the

query is made before td + n (Algo 6: lines 6-10). Another change is that the distinct elements

algorithm should work over sliding windows, rather than for the entire stream.

Algorithm Description: Similar to the infinite window version of persistence algorithm

(Section 3.5), the sliding window algorithm has three parts: Algorithm 4 initializes data struc-

tures, Algorithm 5 is the algorithm run at each site, and Algorithm 6 gives the algorithm run

at the coordinator node C. The input to our algorithm is the same as that of infinite win-

dow version, except that n, in this case, is the maximum number of timeslots in a window

(Algorithm 4).

The algorithm (Algo 5) used at each site i is similar to the one used for infinite window.

However, the distinct count data structure is now maintained by the distinct counting algorithm

for a sliding window [22, 38, 93].

When a query is made, the coordinator C takes a union of the distinct count datastructures

for the k sites (Algo 6: lines 2-5) and computes n̂d, number of distinct slots when d appeared

in the current window, per the distinct counting algorithm for sliding windows. As discussed
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above, the query processing in our algorithm distinguishes between the cases when the query

is made after td + n (Algo 6: lines 11-13), and when the query is made before td + n (Algo 6:

lines 6-10). If a query is made before td + n, then the persistent items are tracked in the same

way as done by the infinite window version of the algorithm, Algo 3 . However, if a query is

made after td + n, then persistence of an item d is estimated as n̂d.

For relative error parameter 0 < γ < 1 and an error probability parameter 0 < υ < 1, a

distinct counter Dυγ takes as input a stream of updates S and at any given time t maintains an

estimate of dist(R), the number of distinct elements in R, for the elements that occurred in

most recent n slots.

Theorem 5 ([38, 22, 93]). There is a distinct counter Dυγ that takes space O( log 1/υ
γ2

) words of

space, and whenever a query is asked for dist(R) in the most recent n time slots, returns an

estimate X such that Pr[|X − dist(R)| > γ · dist(R)] ≤ υ, where 0 < γ < 1 and 0 < υ < 1.

A detailed description of the algorithm is presented in Algorithms 4, 5, and 6.

Algorithm 4: Sliding Window: Initialization

Input: m - Domain Size of identifiers; n- maximum no. of time slots in a window; α -

persistence threshold; ε - error parameter; δ - error probability;

1 Hash function h : ([1,m]× [1, n])→ (0, 1)

2 Approx. parameters ε1 ← cεε; ε2 ← (1− cε)ε/4α // 0 < cε < 1 is a constant

3 Error Probability: δ2 = cδδ // 0 < cδ ≤ min
(

1, 2
log(1/δ)

)
is a constant

4 Filter parameter τ ← 2
ε1n

5 Threshold T ← (1− ε2)(αn+ 1− 1
τ )

6 Sketch at coordinator S ← ∅
7 for each site i = 1 . . . k do

8 Si ← ∅

3.6.1 Sliding Window : Correctness

Let td be the slot when item d started to be tracked. Also, for a query q made on the

distributed streams, let tq be the last slot of the most recent window [tq − n + 1, tq] on which

query q has been posed.
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Algorithm 5: Sliding Window: Algorithm at node i

1 On receiving item (d, t) at node i

2 if (d, t) /∈ Si then

3 if h(d, t) < τ) then

4 for every node j = 1 . . . k, j 6= i do

5 Send “Start Tracking (d, t)” to j

6 Send (d, t) to the coordinator

7 // Create a new data structure for d

8 Si ← Si ∪ {(d,Dε2δ2 [i](d))}
9 Insert t in Dε2δ2 [i](d))

10 else // if d ∈ Si
11 Insert t in Dε2δ2 [i](d)

12 On receiving message “Start Tracking (d, t)”

13 // Create a new data structure for d

14 Si ← Si ∪ {(d,Dε2δ2 [i](d))}
15 Insert t in Dε2δ2 [i](d)

Lemma 4. Let G(τ) be the geometric random variable with parameter τ . Also, let nd denote

the number of distinct slots in the distributed streams where d appears in current window after

being tracked by the algorithm. For each item d, nd can be expressed differently depending on

tq and G(τ) in the following manner.

1. If tq ≤ td + n: if G(τ) ≤ p(d), nd = p(d)−G(τ) + 1, else nd = 0.

2. If tq > td + n: nd = p(d).

Proof. The proof of the above Lemma is divided into two parts, for the two cases described

above. Proof of part 1) is the same as that of proof of Lemma 1.

For part 2), at (td + n)-th slot, the first slot when d was tracked expires, i.e. td expires.

From the slot td onwards, every occurrence of d is tracked. Hence, if the current window of the

most recent n slots does not include td, then persistence of d, p(d), over the current window is

the number of occurrences of d in the current window, i.e. p(d) = nd.

Lemma 5. Low False Negative: An α-persistent item d having a persistence p(d) ≥ αn

during the most recent n slots is not reported as α-persistent by the coordinator in Algorithm 6

with a probability at most
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Algorithm 6: Sliding Window:Algorithm at the coordinator C:

1 On receiving tuple (d, td) : S ← S ∪ {(d, t)}.
2 On receiving a query for the set of Persistent Items: for each (d, td) ∈ S do

3 for i = 1 . . . k do

4 Compute the union of Dδ2
ε2 [i](d) data structures over all sites i.

5 Let n̂d be the estimate of the distinct count over this union.

6 if t ≤ td + n then // t - current slot

7 if td < (1/τ) then

8 p̂(d)← n̂d + td;

9 else

10 p̂(d)← n̂d + (1/τ);

11 else

12 p̂(d)← n̂d;

13 T ← (1− ε2)αn;

14 if p̂(d) ≥ T then

15 Report d as α-persistent item;

1. e−2 + 2δ
log (1/δ) if tq ≤ td + n

2. 2δ
log (1/δ) if tq > td + n

Proof. Consider an α-persistent item d, with persistence p(d) ≥ αn.

1. If tq ≤ td + n: Proof is same as that of Lemma 2, where n is the maximum number of

slots in current window instead of the entire distributed stream. Note that δ2 = cδδ. The

error probability can be reduced to δ by running log (δ)
log (e−2+cδδ)

parallel instances.

2. If tq > td + n Let A denote the event that d is not reported, i.e. the event that false

negative occurs. Using the proof in Lemma 4, we can also conclude that the estimate of

persistence of d, p̂(d), in the most recent n slots is the estimate returned by the distinct

counter for item d, n̂d, to approximate the count of distinct number of slots where d

occurred over the most recent n slots, i.e. p̂(d) = n̂d. Per the above algorithm, item d is

not reported as α-persistent if p̂(d) < T . Pr[A] = Pr[p̂(d) < T ] = Pr[n̂d < T ].
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Let B denote the event (1− ε2)nd < n̂d. From the above algorithm, T = (1− ε2)αn.

Pr[A|B] = Pr[n̂d < T |(1− ε2)nd < n̂d]

≤ Pr[(1− ε2)nd < T ]

= Pr[(1− ε2)p(d) < T ] using Lemma 4

≤ Pr[(1− ε2)αn < T ] given p(d) ≥ αn

= 0 substituting T

The probability of B̄ depends on the guarantee given by the distinct counter Dδ2ε2 . Using

Theorem 5 we have: Pr[(1− ε2)nd ≤ n̂d ≤ (1 + ε2)nd] ≥ (1− δ2) Hence,

Pr[B̄] = Pr[n̂d < (1− ε2)nd]

≤ Pr[n̂d < (1− ε2)nd] + Pr[n̂d > (1 + ε2)nd]

≤ δ2 ≤ 2δ

log (1/δ)

Using Pr[A] ≤ Pr[A|B] + Pr[B̄], we get the desired result.

Lemma 6. Low False Positive: An item d which is far from persistent in the most recent

n slots, i.e, whose persistence p(d) < (α − ε)n in the current window of size n, is reported as

α-persistent with probability at most 2δ
log (1/δ) .

Proof. Consider an item d with persistence p(d) < (α− ε)n. d is far from persistent. The proof

has two cases based on when query is posed with respect to td, the slot when d is first tracked

by algorithm.

1. If tq ≤ td + n:, proof of above lemma is the same as that of Lemma 3, n denoting the

maximum number of slots in a sliding window, and not the total number of slots in the

entire distributed stream.

2. If tq > td + n: Persistence of an item d is the number of occurrences of d within the

current window which equals nd, i.e. p(d) = nd from Lemma 4. Also, p̂(d) = n̂d. Let
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A denote the event that d is reported, i.e. the false positive occurs. Also, per the above

algorithm, d is reported if p̂(d) ≥ T .

Pr[A] = Pr[p̂(d) ≥ T ] = Pr[n̂d ≥ T ]

Let B denote the event (1 + ε2)nd ≥ n̂d. We have T = (1− ε2)αn and ε2 = (1− cε)ε/4α.

Pr[A|B] = Pr[n̂d ≥ T |(1 + ε2)nd ≥ n̂d]

≤ Pr[(1 + ε2)nd ≥ T ]

= Pr[(1 + ε2)p(d) ≥ T ]

≤ Pr

[
(α− ε)n ≥ T

(1 + ε2)

]
given p(d) < (α− ε)n

≤ Pr [0 ≤ αn− εn− (1− 2ε2)αn] substituting T , and 1−ε2
1+ε2

> (1− 2ε2)

= Pr [0 ≤ 2ε2α− ε] = 0 since ε2 < ε/2α

Using Theorem 5,

Pr[B̄] = Pr[n̂d > (1 + ε2)nd]

≤ Pr[n̂d < (1− ε2)nd] + Pr[n̂d > (1 + ε2)nd]

≤ δ2 ≤ 2δ

log (1/δ)

Theorem 6. By running at least log δ
log (e−2+cδδ)

parallel instances of the above algorithm, where

cδ ≤ 2
log (1/δ) , α-persistent items can be tracked with the following properties:

1. An item d with persistence p(d) ≥ (αn) is reported as α-persistent with probability at least

1− δ.

2. An item d with persistence p(d) < (α − ε)n is not reported as persistent with probability

at least 1− δ.

Proof. Suppose we run θ parallel instances of the above algorithm, and take the union of the

items returned by all the instances. For the first part, consider an α-persistent item d. If d

is not returned, it must not be returned by any of the instances. With respect to the time of
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arrival of a persistent item d, if a query q is posed on a window [tq−n+1, tq], then we have two

cases: 1) If tq ≤ td+n, then d is reported with probability (e−2 + cδδ)
θ
, where 0 < cδ ≤ 2

log (1/δ) .

So, if we run log δ
log (e−2+cδδ)

parallel instances, the probability that false negative occurs is at most

δ. 2) If tq > td + n, then d is reported with probability
(

2δ
log (1/δ)

)θ
, and the proof follows.

For an item d with persistence less than (α− ε)n, the proof is similar to the case of infinite

window.

3.6.2 Sliding Window: Complexity Analysis

Theorem 7. Expected Space: Total expected space required by the sliding window algorithm

per site is O

(
α2 log

(
log (1/δ)

2δ

)
P

ε3n

)
and the expected space complexity over all sites is O

(
kα2 log

(
log (1/δ)

2δ

)
P

ε3n

)
Proof. Here, P is the sum of the persistence (total persistence till current time slot, c) of all

the distinct items in the distributed stream during the period [c−n+1, c]. The proof is similar

to that of Theorem 3.

Theorem 8. Low Communication Overhead: The expected communication complexity of

the sliding window algorithm over all sites is O

(
kα2 log

(
log (1/δ)

2δ

)
P

ε3n

)
Proof. Proof is similar to that of Theorem 4, except that the communication occurs between

sites only when a new item is tracked and for the same item no further communication is done

until the query is posed.

3.7 Experiments

We report on the observed performance of our implementation of the infinite window and

the sliding window algorithms.

Data We have used synthetic as well as real-world data sets for our experiments. The

real-world data is a network traffic trace from CAIDA taken at a US west coast OC48 peering

link for a large ISP in 2002 and 2003, where we consider each source-destination pair to be an

item. The network trace has approximately 400 million tuples with about 26 million distinct
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items. The trace has been captured over a duration of 1 hour. We also generated synthetic

data using a zipfian distribution, with α = 1.5. This dataset has 500 million tuples, consisting

of approximately 40 million distinct items.

Algorithms We compared our algorithm with two other algorithms. The first one which

we call algorithm A, is an exact distributed algorithm for tracking persistence, which identifies

α-persistent items by keeping track of the exact persistence number of each item, through

maintaining the distinct slots it occurred in. Algorithm A is the most expensive in terms of

space and communication.

The second algorithm, which we call Algorithm B, is a small space algorithm which selec-

tively tracks items using a hash-based sampler in the same way as our algorithm does. But for

each item d that Algorithm B tracks, it computes the exact number of distinct time slots where

the item reappears by maintaining a list of distinct time slots of appearance. Since Algorithm

B does not incur an error cost in counting the number of re-occurrences once it starts tracking

an item, it can actually track fewer items than our algorithm for the same value of ε. However,

for each item tracked, B has to maintain significant amount of state for the item (a list of all

slots where the item appeared, at each site).

Our experiments evaluate the performance of our algorithms in terms of communication

cost and accuracy, where accuracy is measured through the false positive and false negative

rates. We also performed experiments to show the effect of the width of time slot on the

communication cost of the dataset. Unless specified otherwise, we set the error probability

δ to e−2. For the infinite window case, we divided the real world trace into 34 million non-

overlapping time slots (width of each time slot being 0.1 millisecond) and the zipfian dataset

into 36 million non-overlapping slots. To evaluate the sliding window version of the algorithm,

we considered a window size of 30 million distinct time slots (width of each time slot being 0.1

millisecond) for real world trace and 25 million distinct time slots for zipfian dataset.

Communication Cost vs Accuracy In the first set of experiments, we kept the number

of sites constant, at 10, and varied the approximation parameter ε. The results from the exper-
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iments on zipfian data is shown in Figure 3.1a for the infinite window case and in Figure 3.1b

for the sliding window case. From this data we make the following observations.

There is a clear trade-off between accuracy and communication cost. The communication

cost decreases as we increase the value of ε for our algorithm as well as for Algorithm B.

The communication cost incurred by our algorithm for both infinite and sliding window is an

order of magnitude smaller than that of Algorithms B and A. In fact, we observe that the

communication cost of algorithm B is only slightly smaller than the naive algorithm A.

The results of experiments on the network trace are presented in Figures 3.1c and 3.1d.

These are similar to the results for zipfian data, and our algorithm has significantly lower

communication cost when compared with Algorithms A and B. However, since the size of the

dataset is smaller and it has a relatively small number of distinct time slots, the cost incurred

by algorithm B is low. Hence, in this case the communication cost of algorithm B, though

higher than our algorithm, is not as high as in the case of zipfian data file. This shows that the

benefits of our algorithm are even greater on large datasets with a large number of time slots.

Communication Cost vs Number of Sites In order to evaluate the scalability with

the size of the distributed system, we varied the number of sites in the system, while keeping

the approximation error ε fixed at 0.025. The results for zipfian data are shown in Figures 3.2a

and 3.2b, and for the network trace in Figures 3.2c and 3.2d. We observe that the commu-

nication cost of the algorithm increases linearly with the number of sites in the system, in

accordance with the theoretical results. The results also show that our algorithm consistently

performs better than the other two algorithms. Algorithms A and B also show a similar linear

increase in communication cost with the number of sites.

The increase in communication cost of our algorithms and that of algorithm B is due to

the fact that every site has a copy of each item tracked in the distributed system. Hence,

increase in the number of sites would lead to an almost linear increase of the space requirement

and communication cost. In the case of the algorithm A, the reason for the increase in the

communication cost is as follows: multiple appearance of an item in the same time slot does

not affect the size of the datastructure maintained by the site, but if an item appears multiple
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times in the same slot across different sites, then multiple copies (same as the number of sites

where they appear) of the items need to be maintained, increasing the communication cost.

Communication Cost vs Width of Timeslot We performed experiments to study

the effect of the width of time slots for a given dataset on communication cost. We keep the

value of ε fixed at .025 and the number of sites fixed at 10. We use real network trace for

our experiments. Using the same dataset traces, we vary the width of each time slot from 0.1

millisecond to 2 milliseconds and measure the communication cost of our algorithm.

The results are shown in Figure 3.3a for infinite window and Figure 3.3b for sliding window.

We observe that the communication cost of algorithm A decreases slightly with the increase in

the width of time slot. The reason is that the distinct number of time slots decreases with the

increase in the width of time slot, hence, algorithm A has to maintain a smaller datastructure.

However, interestingly, the communication costs of our algorithm and of Algorithm B increase

with the width of time slot, if we keep the threshold for persistence the same. This is due

to the fact that as the width of the time slot increases, the number of persistent items for

a given persistence threshold increases, and the data structures become larger. Though the

number of messages decreases, the size of the messages increases, leading to an overall increased

communication cost.

We have also included a graph showing the change in the total number of elements tracked

across the distributed system when the width of the time slot is varied. The results are shown

in figure 3.4a for infinite window and in figure 3.4b for sliding window. The number of elements

tracked does not vary for algorithm A as it tracks all the elements in the distributed dataset.

However, for our algorithm and for algorithm B, the number of elements tracked increases with

the increase in the width of time slot.

We also compared the space cost, which is defined as the total space taken by the data

structures at the sites and the coordinator. In general, the space taken by our algorithm is

much smaller than that of Algorithms A and B, for most parameter settings. In Table 3.1, we

show the space cost of each algorithm for the sliding windows scenario, on the zipfian data on a

distributed system of 10 nodes, for different values of ε. The space cost of A is constant, since
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it is unaffected by the setting of ε, while that of B is rather large due to the need to maintain

the exact set of distinct time slots where the tracked elements appeared. The results for the

other data sets, and for the infinite windows version are similar.

Table 3.1: Space cost for Zipfian data on system of 10 nodes for algorithms A, B and our

algorithm (SS) for sliding windows

Epsilon Space taken by SS Space taken by B Space taken by A

(in MBytes) (in MBytes) (in MBytes)

.01 149.129 1089.92 1860.38

.02 50.3261 1068.78 1860.38

.03 24.7846 1045.55 1860.38

.04 14.4616 1032.57 1860.38

.05 9.01553 1024.79 1860.38

.06 6.40722 1021.77 1860.38

.07 4.57717 1017.46 1860.38

Accuracy We measure the actual false negative rate and the false positive rate of our

algorithm for different values of δ, using 10 sites, keeping the value of ε fixed at 0.025. We use

real network trace and zipfian dataset for our experiments. For the experiments corresponding

to the sliding window version of our algorithm, we consider the window size of 30 million time

slots for the network trace and 25 million time slots for zipfian.

According to our paper, we report an item d as persistent if its approximate persistence p̂d

is at least αn. Also, an item d is not reported as persistent if its estimated persistence p̂d is less

than (αn− εn). Note that for the infinite window version of the algorithm, n denotes the total

number of time slots in the entire dataset, and for the sliding window version of the algorithm,

it denotes the maximum number of time slots in the current window.

We define the false negative rate as a fraction of the persistent items which were not reported

as persistent, and the false positive rate as a fraction of the non-persistent items which were

reported as persistent. Per Theorem 2, the false negative rate and the false positive rate given

by our algorithm is bounded by error probability δ.

The false negative rate for the zipfian and the network trace is shown in Figure 3.5a for

infinite window and Figure 3.5b for sliding window. For this experiment, we vary δ from 0.001
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(a) Zipfian data α = 1.5 (Infinite Window)
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(b) Zipfian data α = 1.5 (Sliding Window - 25 million
time slots)
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(c) Network Trace (Infinite Window)
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Figure 3.1: Communication Overhead on varying relative error ‘ε’, for 10 sites

to 0.1. The plot named “Error Threshold” plots the maximum expected error for each value

of δ. We observe that the false negative rate for both datasets is always less than the error

probability δ. In fact, for our experiments, the false negative rate of network trace and zipfian

did not exceed 0.025 for any value of δ. We also observe that for δ = 0.001, there are no false

negatives.

Similarly, we observe that the the false positive rates for the zipfian and the network trace,

shown in Figure 3.5c for infinite window and in Figure 3.5d for sliding window, is much below
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(a) Zipfian α = 1.5 (Infinite Window)
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(b) Zipfian α = 1.5 (Sliding Window - 25 million time
slots)
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(c) Network Trace (Infinite Window)
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Figure 3.2: Communication Overhead on varying number of sites for ε = 0.025

the error threshold. The false positive rate of network trace and zipfian given by both infinite

window and sliding window version of our algorithm, are in the order of 10−5 to 10−7.

3.8 Conclusion

We presented algorithms for communication-efficient monitoring of persistent items in a

distributed stream of events. These can help detect situations such as when a malicious ad-

versary is establishing a regularly spaced connection to a remote entity, but is trying to evade

detection through keeping the volume of communication low and by having the communication
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(b) Network Trace (50 minutes Sliding Window)

Figure 3.3: Communication Overhead as a function of the width of time slot (in milliseconds)
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Figure 3.4: Total number of items tracked across all sites as a function of the width of the time

slot (in milliseconds)

originate from different sites. The total distributed state maintained by our algorithms is far

less than the number of distinct items observed in the stream, and the communication overhead

is also small compared with the number of events and the number of items observed. Our ex-

perimental evaluations show that the communication cost and memory cost of our algorithms

are much smaller than those of straightforward algorithms, and their false positive and false

negative rates are typically much lower than theoretical predictions.
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and Zipfian
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CHAPTER 4. QUANTILE ESTIMATION FROM THE UNION OF

STREAMING AND HISTORICAL DATA

A quantile is a fundamental analytical primitive, defined as follows. Let D denote a dataset

of n elements chosen from a totally ordered universe. For an element e ∈ D, the rank of the

element, denoted by rank(e,D), is defined as the number of elements in D that are less than

or equal to e.

Definition 2. For 0 < φ < 1, a φ-quantile of D is defined as the smallest element e such that

rank(e,D) ≥ φn.

Quantiles are widely used to describe and understand the distribution of data. For instance,

the median is the 0.5-quantile. The median is widely used as a measure of the “average” of

data, and is less sensitive to outliers than the mean. The set consisting of the 0.25-quantile,

the median, and the 0.75-quantile is known as the quartiles of data.

We consider a setup where a live data stream is captured and processed in real time. The

data stream is collected for the duration of a “time step” into a “batch”, and then loaded into a

data warehouse. For example, a time step may be an hour or a day. Data that is not yet loaded

into the warehouse is referred to as the “streaming data” or “data stream”. Data that has been

archived in the warehouse is called the “historical data”. The historical data is typically larger

than the data stream by a factor of the order of thousands. See Figure 4.1 for an illustration

of the setup for data processing.

Let U denote the universe that has a total order among all elements. Let H denote the

historical data that has already been loaded into the warehouse andR denote the live streaming

data. Let n denote the size of H and m denote the size of R. Let H[1] < H[2] < . . . , < H[n]

be the elements of H according to their total order in U and R[1] < R[2] < . . . < R[m] be
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Figure 4.1: Setup for Integrated Processing of Historical and Streaming data

the elements of R according to their total order. Note that the elements of H and R are not

necessarily stored in a sorted order, and the notation H[i] and R[i] are only to help with the

explanation. Let T = H ∪R, and let N denote the size of T .

The problem is to answer queries on T , which is changing constantly due to arrival of new

data. In general, it is expensive to answer quantile queries exactly on evolving data [63], in

that it requires either very large main memory, or a large number of disk accesses. Hence, we

focus on approximate computation of quantiles, where there is uncertainty in the rank (within

T ) of the element returned versus the desired rank, and the approximation error is defined to

be the worst case difference between the rank of the element that is returned and the derived

rank.

4.1 Goal

Given an approximation parameter ε ∈ (0, 1], and a constant φ ∈ (0, 1], design a method

that identifies an approximate φ-quantile, e, from T such that |rank(e, T )− φN | < εm, where

N is the total number of elements in the union of historical and streaming data, T , and m is

the number of elements in the streaming data (or the data stream).

The amount of main memory available is much smaller than either R or H, but secondary

storage is abundant. At query time, the processor can answer quantile queries using a com-

bination of data structures stored in main memory as well as by making queries to the disk

resident data.
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Note that the approximation error in our formulation is only εm. Typical streaming algo-

rithms for quantiles, when applied to our problem, yield an approximation error of εN , which

can be much larger than εm, since N � m.

4.2 Contribution

We present a method for processing streaming and historical data that enables fast and

accurate quantile queries on the union of historical and streaming data. Our method provides

the following guarantees.

• A query for a φ-quantile on T is answered with approximation error εm where m is the

size of the streaming data, which is typically much smaller than N , the size of T . The

answer becomes increasingly accurate as the size of the historical data under consideration

increases.

• We provide a theoretical upper bound on the memory requirement of the algorithm. We

show (both theoretically as well as in practice) that the resulting accuracy-memory trade-

off is much better than what can be achieved using state-of-the-art streaming algorithms

for quantile computation. We also provide theoretical upper bounds on the number of

disk accesses required to add a batch of data to the warehouse, and the number of disk

accesses required to answer a query for a quantile.

• We present detailed experimental results that show the performance that can be expected

in practice. A quantile query on T is answered with accuracy about 100 times better

than the best streaming algorithms (using the same amount of main memory), with the

additional cost of a few hundred disk accesses for datasets of size 50 to 100 Gigabytes.

The number of disk accesses required to load a batch into the warehouse is typically not

much more than what is required to simply write the batch to disk.

4.3 Related Work

Quantile computation on large data is a well-studied problem [63, 2, 58, 15, 46, 36, 73],

both in the context of stored data [63] and streaming data [2, 58, 15, 46, 36, 73]. To compute
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quantiles from stored data from a data warehouse or a database, data is processed using multiple

passes through the disk, and hence it is possible to compute exact quantiles in a deterministic

manner. In contrast, in the case of a data stream, only a single pass over the data is possible

and the quantile is computed using in-memory structures that are not able to store the entire

data seen so far. Hence, quantile estimation in a data stream is generally approximate, with a

provable guarantee on the quality of approximation.

Munro and Paterson [63] proposed a p-pass algorithm to compute exact quantiles and

showed a lower bound that the memory required to exactly compute quantiles in p passes is

at least Ω(N1/p), where N is the number of elements in the dataset. Manku et al. in [58]

proposed a single pass deterministic algorithm to estimate ε-approximate φ-quantiles using

space O(1ε log2(εN)). They also proposed randomized algorithms, MRL98 and MRL99, [58, 59]

that identify ε-approximate φ-quantiles with probability at least (1 − δ), 0 < δ < 1, using

O
(
1
ε log2(1ε log2 (1δ ))

)
memory.

Greenwald and Khanna [46] present a deterministic single pass streaming algorithm for

ε-approximate quantiles with worst case space requirement O
(
1
ε log(εN)

)
. and Shrivastava et

al. [73] present a streaming algorithm for ε-approximate quantiles called the “QDigest” that

has a space complexity of O(1ε logU), where U is the size of the input domain. Wang et al. [83]

performed an experimental evaluation of different streaming algorithms [46, 73, 59]. They

concluded that MRL99 [59] and Greenwald-Khanna [46] are two very competitive algorithms

with MRL99 performing slightly better than Greenwald-Khanna in terms of space requirement

and time for a given accuracy. Since Greenwald-Khanna is a deterministic algorithm and its

performance is close to MRL99, Wang et al. suggest that Greenwald-Khanna be used when it

is desired to have a worst-case guarantee on the error. They also propose a simplified version

of [59] called RANDOM, which performs slightly better than [59] in terms of the processing

time.

Current literature on integrated processing of historical and streaming data has focused on

developing efficient architectural models for data integration [68, 23, 24, 81, 5, 1, 11, 91]. In

particular, [44] proposes a framework called DataDepot designed to store streaming data, thus

allowing analysis of massive amount of historical data over a time frame of many years. [91]
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proposes a model which enables data analysis over the union of historical and streaming data.

Our work is complementary to these in that we investigate query processing techniques that

are applicable to these architectural models.

4.4 Approach

A memory-efficient approach to computing quantiles from the union of historical and

streaming data is to apply a streaming algorithm, say the Greenwald-Khanna algorithm [46] or

the QDigest algorithm [73] to T . The streaming algorithm runs continuously and processes each

batch of data, before the batch is loaded into the warehouse. The streaming algorithm main-

tains an in-memory summary that can be used at any time to answer quantile queries on the

entire dataset seen so far. We call this the “pure-streaming” approach. The pure-streaming

approach can estimate quantiles with an approximation error of εN using main memory of

O
(
log (εN)

ε

)
words (if the Greenwald-Khanna algorithm is used). Note that the approximation

error is proportional to the size of the entire dataset, which keeps increasing as more data is

loaded into the warehouse.

Another “strawman” approach is to process H and R separately, by different methods. H

is kept on disk, sorted at all times, and an existing streaming algorithm is used to process R

and maintain an in-memory summary of the streaming data at all times. A quantile query is

answered by combining the stream summary with H. The approximation error in the result

is only due to the streaming algorithm. Hence, it is possible to achieve error proportional to

m, the size of the streaming data only. Since m � N , the accuracy given by this approach is

significantly better than the pure-streaming approach. However, this approach is expensive in

terms of number of disk operations, because at each time step, the new batch has to be merged

into the existing sorted structure. This can lead to a large number of disk I/O operations for

each time step.

Our goal is to improve upon the accuracy of the pure streaming approach and the perfor-

mance of the strawman approach. We aim for an error significantly smaller than εN , using a

similar amount of main memory as the pure streaming algorithm and limited number of disk

I/Os.



www.manaraa.com

68

Intuition. Keeping the data fully sorted on disk at all times is not feasible, due to the

large number of disk accesses needed for doing so. The other extreme, of not sorting data at

all, is not feasible either, since computing quantiles will require multiple scans of the disk (at

query time). We try to find a good middle ground. First, we note that sorting all data that

arrives within a time step is easy to do. We repeatedly merge older partitions to create larger

partitions, where each partition has data within it sorted. We perform this recursively in such

a manner that (1) the number of partitions on disk is small, logarithmic in the number of time

steps and (2) each data element is not involved in only a few merges, so that the total amortized

cost of merging partitions remains small. As a result, we maintain the historical data H on

the disk in a structure that allows for fast updates, but still has only a small number of sorted

partitions.

In addition to the on-disk structure, we maintain an in-memory summary S(H), for H

that provides us quick access to elements at different ranks within each sorted partition. This

summary of historical is updated periodically at each time step with the addition of a new

dataset to the warehouse and also when partitions are merged together. We also maintain an

in-memory summary, S(R), for the streaming data R. This summary is updated with every

new incoming element. At the end of each time step, when the data stream is loaded into the

warehouse, S(R) is reset. Quantile queries are answered by by using a combination of S(H)

and S(R) to generate a quick estimate, followed by making few queries to the disk resident

data, to get a more accurate estimate. We show that our approach is more accurate than

the pure-streaming approach and needs to make significantly fewer disk I/Os compared to the

strawman approach.

4.4.1 Processing Historical Data

Data is archived into the warehouse at the end of every time-step. When a new data set D

is added to H, D is sorted and stored as a separate data partition, instead of merging with an

existing data partition of H. This step ensures that the entire historical data is not accessed

at every time step. This also enables us to maintain data from different time steps separately,
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Figure 4.2: Structure of the data partitions for historical data H, over 100 time steps, for κ = 3.

Each segment in the picture is a data partition, and is labeled with the range of time steps it

spans.

hence allowing for windowed queries restricted to a specific time window of a certain number

of time steps.

Each data partition of H has a logical “level”, a small positive integer, associated with it.

Let κ > 1 be a small integer parameter chosen before the algorithm begins execution. We

maintain the following invariant: Each level can have a maximum of κ data partitions at any

point of time. Let the partitions at level ` be denoted D0
` , D1

` , . . . , Dj−1` , j ≤ κ. Suppose a

newly arrived dataset D, of size η needs to be added to H. Then, D is first sorted and stored

at level 0 of H; the sorting can be performed in-memory, or using an external sort [63, 45],

depending on the size of D.

If there are more than κ partitions in level 0, then all partitions within Level 0 are merged

to form a single partition in Level 1, so that our invariant is maintained. Similarly, if there

are more than κ partitions in Level 1, they are recursively merged to form larger partitions

at level 2, and so on, until we reach a level that has κ or fewer partitions. Partitions at

higher levels contain aggregated information about data from a number of time steps, while

partitions at lower levels are smaller and contain data from fewer time steps. When a quantile

query is executed over H, a common operation is to determine the number of elements in H

that are lesser than a given value. To answer this query, our structure needs to consult a few

(logarithmic in the number of time steps) number of data partitions. At the same time, to add

a new dataset to the warehouse, our structure will not need to manipulate many partitions; the

larger data partitions are rarely touched. Figure 4.2 shows the organization of data partitions

of the historical data after 100 time steps, for κ = 3.
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The parameter κ that determines the maximum number of partitions at each level, is called

the“merge threshold”. The maximum number of logical levels in H is logκ T , where T is the

total number of time steps.

Construction of S(H) In addition to the on-disk structure for H, we maintain an in-

memory summary for each data partition of H. The in-memory structure S(H) consists of

the summaries of every partition. Naturally following a parallel structure to the on-disk or-

ganization, S(H) consists of a set of independent data structures at λ = dlogκ T e different

logical levels, one corresponding to the different logical levels of H, S0(H), S1(H), S2(H), . . . ,

Sλ−1(H).

Let ε1 = ε
2 and β = d 1

ε1
+ 1e. For 0 ≤ ` ≤ λ − 1, each data structure S`(H), is a set of no

more than κ independent summaries, S0
` (H), S1

` (H), . . . , Sj−1` (H), j ≤ κ. The data partition

in H corresponding to Si`(H) is denoted Di`. Each summary, Si`(H), is an array of length β.

When a new data partitionD is created, either due to adding a new dataset to H at level

0, or due to merging smaller partitions, a new summary is generated for this partition as

follows. After D is sorted, it is divided into β equal subsequences, and the first element of each

subsequence is chosen into the summary. Each item of the summary, in addition to having

the value of the element, also has a pointer to the on-disk address, for fast lookup in the data

warehouse. Note that the generation of a new data partition and the corresponding summary

occur simultaneously so no additional disk access is required for the batch summary, beyond

those taken for generating the new data partition. Algorithm 8 shows the steps to process H

and compute S(H) at each time step. This uses a subroutine Algorithm Merge-Partitions(`)

(described in Algorithm 9) for merging smaller partitions at level ` into a single partition at

level (`+ 1).

Algorithm 7: Initialize Data Structures

1 Input parameters: error parameter ε

2 ε1 ← ε/2, ε2 ← ε/4

3 T ← 0 // T - number of time steps

4 S(H)← ∅ // Initialization of batch summary

5 S(R)← ∅ // Initialization of stream summary
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Algorithm 8: Batch-Update(D)

1 /* Update H and S(H) with a new dataset D of size η. */

2 T ← (T + 1);

3 Sort D and add as a new partition to level 0;

4 `← 0;

5 while (More than κ partitions at level `) do

6 Merge all partitions at level ` into partition D′, and compute its summary S′ using

Algorithm Merge-Partitions(`);

7 Add partition D′ to level (`+ 1) and S′ to S`+1(H);

8 S`(H)← ∅;
9 `← (`+ 1);

Algorithm 9: Merge-Partitions(`)

1 /* Merge all partitions at level ` into a single partition and recompute

its summary. There must be κ partitions at level `. */

2 Multi-way merge the sorted partitions ∪κj=1D
j
` into a single partition D′ using a single

pass through the partitions;

3 // Create a summary for D′
4 η ← size of D′;
5 S′ ← ∅;
6 for i from 0 to β − 1 do

7 Add element at rank (iε1η) within D′ to S′;

8 return D′ and S′;

4.4.2 Processing the Data Stream

We process the data stream using an ε2-approximate streaming quantiles algorithm such

as [46, 73], where ε2 = ε/4. Given a desired rank r, such an algorithm returns an element whose

rank r̂ in a stream R of size m lies between [r−ε2m, r+ε2m]. For our work, we seek worst-case

(not randomized) guarantees on the error, and hence we have used Greenwald-Khanna [46]

algorithm.

When a query is received, the streaming algorithm is used to generate a summary S(R),

an array of length β′ = d 1
ε2

+ 1e, using steps shown in Algorithm 10. Algorithm 10 uses the

streaming algorithm to find elements of approximate rank iε2m from R, for i ranging from 0



www.manaraa.com

72

to 1/ε2, and add these elements to S(R). Due to the guarantee provided by the streaming

algorithm, each of these β′ elements are identified with a maximum error of ε2m in their ranks.

4.4.3 Answering Quantile Query over a Union of Historical and Streaming data

Our algorithm gives two kinds of responses to a quantile query (1) a quick response with

a rough estimate, using only the in-memory structures and (2) a slower, but more accurate

response using the in-memory summaries as well as disk accesses. The steps to compute a

Quick Response and an Accurate Response has been described in Algorithm 10.

When a query is received, Algorithm 10 generates constructs S(R) using the streaming

algorithm, as described in Section 4.4.2. After the construction of S(R), Algorithm 10 takes a

union of S(H) and S(R), S(T ), such that the elements in S(T ) are stored in ascending order.

Let S(T )[i] be the i-th element of S(T ), 0 ≤ i < |S(T )|.

Both the Quick Response and the Accurate Response requires us to determine the minimum

and maximum possible ranks of each element S(T )[i] of S(T ), in T , for i = 0, 1, . . . |S(T )| − 1.

Let the minimum and maximum possible ranks of element S(T )[i] be denoted as Li and Ui

respectively. We compute Li and Ui in the following manner.

Since S(T ) = S(H) ∪ S(R), S(T )[i] either comes from S(H) or from S(R), i.e. S(T )[i] ∈

S(H) or S(T )[i] ∈ S(R).

If S(T )[i] ∈ S(H), then element S(T )[i] has to be from one of the data partitions, say Dx`

of size ηx` , from H. Note that since each element in S(H) is indexed, the rank of S(T )[i] in

Dx` is known exactly. On the other hand, if S(T )[i] ∈ S(R), then the element S(T )[i] has to

be from the data stream R. Since ε2 approximation was used to generate S(R), each element

in S(R) has a maximum error of ε2m in its rank. Hence, the rank of S(T )[i] in R is known

approximately, with a maximum error in its rank being ε2m.

Since elements in S(T ) are arranged in ascending order, the 0-th element of S(T ) is evidently

the smallest element in T . Hence, L0 = U0 = 0. We compute Li from Li−1 as follows: as follows:

1) If S(T )[i] ∈ S(H),
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Suppose S(T )[i] is from data partition Dx` of size ηx`

Li = Li−1 + 1, if (rank(S(T )[i],Dx` ) = 0)

Li = Li−1 + ε1η
x
` , otherwise

2) If S(T )[i] ∈ S(R),

Li = Li−1 + 1, if (rank(S(T )[i],R) = 0)

OR (rank(S(T )[i],R) = ε2m)

Li = Li−1 + ε2m, otherwise

Similarly, Ui is computed from Ui−1 as follows:

1) If S(T )[i− 1] ∈ S(H),

Suppose S(T )[i] is from data partition Dx` of size ηx` , then

Ui = Ui−1 + ε1η
x
` − 1

2) If S(T )[i] ∈ S(R),

Ui = Ui−1 + 2ε2m− 1 if rank(S(T )[i− 1],R) = 0

Ui = Ui−1 + ε2m− 1, otherwise

Observation 1. The following guarantees hold for Li and Ui:

1. For the i-th element of S(T ), S(T )[i], 0 < i ≤ |S(T )|,

Ui − Li < ε1n+ 3ε2m < εN

2. For two consecutive elements in S(T ), when arranged in ascending order, S(T )[i− 1] and

S(T )[i],

a. Li− Li−1 ≤ max(ε1 max
1≤j≤κ,0≤`≤log T

{|Dj` |}, ε2m), and,

b. Ui− Ui−1 ≤ max(ε1 max
1≤j≤κ,0≤`≤log T

{|Dj` |}, ε2m)

4.4.3.1 Quick Response

On receiving a quantile query, our algorithm provides a quick and rough answer that has

a similar accuracy as that of a pure streaming approach. Algorithm 10 describes the steps for

providing a quick answer to the query.
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Algorithm 10: Quantile-Query(r, T )

1 /* Answer query for finding element of rank r from T */

2 // Construct S(R)

3 for i from 0 to β′ − 1 do

4 Find element e at approximate rank iε2m using the streaming algorithm

5 S(R)← S(R) ∪ e
6 S(T )← S(H) ∪ S(R), arranged in sorted order

7 // Quick Response to the query

8 for i = 0, 1, . . . , |S(T )| − 1 do

9 if Li > r then

10 return ei−1

11 // Accurate Response to the query

12 (u, v)← Generate-Filter(S(T ), r)

13 return Query(S(R), S(H), u, v)

Lemma 7. Given a query to identify an element of rank r in T , Algorithm 10 returns an

element of rank r̂ such that r̂ ≤ |r − εN |.

Proof. Let the algorithm return S(T )[i] as a quick response to the query for finding element

of rank r from T . For simplicity, let S(T )[i] be denoted as ei. The Algorithm 10 returns an

element ei as a quick answer, such that Li ≤ r < Li+1. In this situation, the maximum possible

rank, Ui, of the returned element ei in T can have two possible conditions : 1) Ui ≥ r or 2)

Ui < r.

1. If Ui ≥ r:

We know Ui ≥ r and Li ≤ r < Li+1, or Li ≤ r ≤ Ui. Now,

Ui − Li < εN, from Observation 1,

=⇒ r − Li ≤ εN ≤ Ui − r, since Li ≤ r ≤ Ui

2. If Ui < r:

Since r < Li+1, therefore r < Ui+1. Hence, we have, Li ≤ r < Ui+1.
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Now, from Observation 1,

Li+1 − Li ≤ max(ε1 max
j,`

(log T{|Dj` |}), ε2m), and,

Ui+1 − Li+1 ≤ ε1n+ 3ε2m = ε(n/2 + 3m/4)

=⇒ Ui+1 − Li ≤ εN

=⇒ r − Li ≤ εN ≤ Ui+1 − r, since Li ≤ r < Ui+1

We observe that in both the conditions above, the maximum error in the answer given by Quick

Response is εN .

4.4.3.2 Accurate Response

The algorithm for Accurate Response has been described in Algorithm 10. As a first step,

we find a pair of elements u and v from S(T ) such that the element of desired rank r is guar-

anteed to lie between these elements, i.e rank(u, T ) ≤ r ≤ rank(v, T ). We refer to this pair

as Filters. We generate the filters by calling the Algorithm Generate-Filters(X, r) (described

in 11), in the following manner:

For simplicity, let ei = S(T )[i]. We then find elements u and v using Algorithm 11 such

that:

u = ei, Ui = max
0≤j<|S(T )|

{Uj}, Ui ≤ r

v = ei, Li = min
0≤j<|S(T )|

{Lj}, Li ≥ r

Lemma 8. Given rank r and summary S(T ), Algorithms 10 and 11 can find elements u ∈

S(total) and v ∈ S(T ), such that rank(u, T ) ≤ r ≤ rank(v, T ) and (rank(v, T )−rank(u, T )) ≤

2εN , where N = |T |.
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Algorithm 11: Generate-Filters(S(T ), r)

1 /* Find filters u and v from S(T ) such that element of rank r in T is

guaranteed to lie between the filters */

2 for i from 0 to |S(T )| − 1 do

3 Let ei be the i-th element of S(T )

4 if Ui ≤ r then

5 u← ei

6 if Li ≥ r then

7 v ← ei; break

8 return (u, v)

Proof.

We know, u = S(T )[x], Ux = max
0≤j<|S(T )|

{Uj}, Ux ≤ r

v = S(T )[y], Ly = min
0≤j<|S(T )|

{Lj}, Ly ≥ r

Hence, Ux ≤ r < Ux+1, Ly−1 < r ≤ Ly

From Observation 1, since,

Ux+1 − Ux ≤ max(ε1(max
j,`
{|Dj` |}), ε2m), and,

Ux − Lx < ε1n+ 3ε2m

We can conclude that,

Ux ≥ r −max(ε1(max
j,`
{|Dj` |)}, ε2m)

=⇒ Lx ≥ r −max(ε1(max
j,`
{|Dj` |)}, ε2m)− (ε1n+ 3ε2m)
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Similarly, we can conclude,

Uy ≤ r + max(ε1(max
j,`
{|Dj` |)}, ε2m) + (ε1n+ 3ε2m)

Hence,

Uy − Lx ≤ (2ε1n+ 6ε2m) + max(2ε1(max
j,`
{|Dj` |)}, 2ε2m)

≤ 2εN, since, ε1 = ε/2 and ε2 = ε/4

which proves the lemma.

Once we have obtained u and v, we make a series of recursive calls to the function Query(S(R),

S(H), u, v) (described in Algorithm 12) to narrow down the range of elements between u and v,

by finding a new pair of filters with smaller interval size recursively. The objective is to narrow

down the range of elements between the pair of filters to a point where all the consecutive

elements between the filters in H can be loaded into memory. These consecutive elements from

H are used in combination with S(R) to accurately answer the quantile query.

4.4.4 Correctness

Lemma 9. Given a query to identify an element of rank r from T , Algorithm 10 returns an

element whose rank in T is r̂ such that |r− r̂| ≤ O(εm), where 0 < ε < 1 is an error parameter

.

Proof. Per Algorithm 10, we start with finding a pair of filters u and v from S(T ) such that

rank(u, T ) ≤ r ≤ rank(v, T ) and rank(v, T ) − rank(u, T ) ≤ 2εN . Using Algorithm 12, we

recursively revisit the disk to find a new pair of filters u′ and v′ such that rank(u, T ) ≤ r ≤

rank(v, T ) still holds true though the difference in the ranks of the new filters u′ and v′ decreases

compared to the previous filter, i.e rank(v′, T ) − rank(u′, T ) < rank(v, T ) − rank(u, T ). We

recursively compute a new pair of filters u′ and v′ till we reach a point where maximum

number of elements between v′ and u′ do not exceed 1
ε i.e rank(v′, T ) − rank(u′, T ) ≤ 1

ε for

each summary in S(H).
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Algorithm 12: Query(S(R), S(H), u, v)

1 /* Find accurate quantile from S(R) and S(H) using the filters u and v to

make disk operations in H */

2 Let z ← u+v
2

3 // Compute ρH - rank of z in H
4 for each summary S′ in RS do

5 // Let D′ be the corresponding data partition

6 Find largest element x in S′ such that x ≤ u
7 Find smallest element y in S′ such that y ≥ v
8 Let ranks of x and y in D′ be l and r resp. ρH ← ρH+ Rank-in-Batch(z, D′, l, p)
9 // Compute ρR - rank of z in R

10 for i from 0 to |S(R)− 1| do

11 if z ≥ S(R)[i] then

12 ρR ← iε2m

13 ρ← ρH + ρR
14 if (r < (ρ− εm)) then

15 return Query(S(R), S(H), u, z)

16 else if (r > (ρ+ εm)) then

17 return Query(S(R), S(H), z, v)

18 else

19 return z

Algorithm 13: Rank-in-Batch(element e, partition D′, l, p)

1 /* Find rank of element e in partition D′, given rank of e lies between l

and p */

2 if (D[(l + p)/2] ≤ e < (D[(l + p)/2 + 1]) then

3 return (l+p)
2

4 else if (e < Di`[(l + p)/2]) then

5 Rank-in-Batch(element e, D′, l, (l + p)/2)

6 else

7 Rank-in-Batch(element e, D′, (l + p)/2, p)

This implies that we have obtained all the consecutive elements from H between u and v

into the query data structure Q, since we allocate a query workspace of 1
ε for every summary.

Q now becomes an exact data structure because the element in T of rank r is guaranteed to lie

between filters u and v, and all the elements in T that lies between u and v and are originally
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from H is contained in Q. This also implies that had there not been the streaming data R, Q

would have returned the element of rank r with error 0.

However, there is an error of ε2m because T also includes element from S(R). Hence the

maximum error given by our algorithm is that due to the streaming part, i.e O(εm)

4.4.5 Complexity Analysis

4.4.5.1 Disk Accesses

Lemma 10. The number of disk accesses required to update H and maintain the indices of

S(H) when a new dataset is added to H at each time step is amortized O( n
BT log ( nB )), where

n is the size of H, B is the block size and T is the number of time steps.

Proof. When a new dataset D of size η arrives, disk I/Os are made for at most two reasons: 1)

to sort and add D into a new separate partition in H, and 2) if needed, to merge a few data

partitions according to the algorithm.

Adding a new dataset D, of size η, to H at a time step: A dataset to be added

to H at a given time step is generally large, hence in many cases, it might not be feasi-

ble to sort the dataset using in-memory sorting methods. In such cases, an external sorting

method is used. Suppose, we use a maximum memory size M for external sorting. Then,

log (NB/M2)/ log (M/B) + 1 complete scans of D is required to perform an external sorting

over the dataset. In the first scan the following steps are taken: 1) A small chunk of data of

size M is loaded in memory, where M is smaller than the size of the memory, 2) The chunk is

then sorted using in-memory sorting techniques, 3) The sorted chunk of data is then written

back to disk, 4) Steps 1, 2 and 3 are repeated. After the first scan of the dataset is completed,

the disk has η
M sorted chunks. Since, MB blocks can be loaded in memory at a time, the number

of disk accesses required for the first scan is :

η
M∑
i=1

M

B
=

η

M
.
M

B
=

η

B

After the first scan through the dataset, a η
M -way merge should be performed over the

dataset. Since, at least one block from each of the η
M chunks are loaded in memory for the
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merge, M must be greater than ηB
M . If M < ηB

M , only M
B chunks can be merged at a time,

using a M
B -way merge. Hence, after the first round of merge, the dataset is divided into ηB

M2

chunks. After the second round of merge, the number of chunks is reduced to ηB2

M3 . Hence, we

can generalize and say that after j-th round, the number of chunks is reduced to ηBj

Mj+1 . Thus,

the number of rounds it takes for the number of chunks to reduce to M
B so that a single M

B -way

merge can be performed to finally produce one sorted dataset is obtained by solving for x in:

ηBx

Mx+1
=
M

B

which leads to x = log (ηB/M2)/ log (M/B).

Hence the, total number of disk accesses required for merging all the small sorted chunks of

dataset produced after the first scan is log (ηB/M2)/ log (M/B).η/B or η log (ηB/M2)
B log (M/B) . Clearly,

M > B, so we can conclude the following:

η log (ηB/M2)

B log (M/B)
<
η log (ηB/B2)

B log (M/B)

<
η log η/B

B logM/B

<
η

B
log (η/B) if M > B, log (MB ) > 1

From above, we can conclude that sorting the datasets require η
B log (η/B) + η

B disk accesses

or O( ηB log (η/B)) disk accesses.

Merge κ datasets of higher level: The second kind of disk access is due to merging

κ datasets together, for one or more higher levels, if required, as per the algorithm. Since,

merging κ datasets of one level is independent of merging κ datasets of another level, this

merge process can take place in parallel for each level whose datasets are required to be merged

together. We use κ-way merge to merge the datasets of a level together. Since, κ is a constant

parameter, a κ-way merge can be performed in a single round by loading one or more blocks

from each of the κ datasets in memory. Hence, for a single merge, each block of κ datasets is

accessed only once. After T time steps, the maximum number of logical levels across which all

the data partitions are distributed is logκ T .

We can say that each of the T datasets that was added to H in the last T time steps is

merged with other datasets into a larger data partition at most logκ (T ) times. We can say that
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each element of the dataset went through the merge procedure at most logκ T times. Since,

the sum of the size of the T datasets is n, total number of disk accesses required to merge the

datasets as per the algorithm is at most O(n logκ T
B ). Hence the amortized disk accesses for this

operation is O(n logκ (T )
BT ).

From above, we conclude that the amortized number of disk accesses per time step to update

H and S(H) is

O( ηB log (η/B) + N logκ (T )
BT ). Average size of data at every time step is n/T . Hence, replacing

η with n/T , we get the amortized number of disk accesses as O( n
TB (log (n/TB) + logκ (T ))).

Considering κ is a constant, the number of disk accesses can be written as O( n
BT log ( nB )).

Lemma 11. Given a query to identify an element of rank r from T , the number of disk accesses

required by the above algorithm to answer the query in the worst case is

O
(
log2 ( εnBT ) log (T )

)
, where ε is the error parameter of the algorithm.

Proof. It takes O
(
log (εn)
BT

)
disk accesses to find the exact rank of elements u and v in the

historical dataset H, where n is the size of H. We find the rank of element (u+ v)/2 in each of

log T datasets of H. Let us denote (u+v)/2 as z. We check if the quantile lies between elements

u and z. If the quantile lies between u and z, then we find the rank of element (u+ z)/2 and

repeat the same process iteratively to narrow down the range. Else if the quantile lies between

v and z, we find the rank of element (v + z)/2 and repeat the above process of iteratively

narrowing down the range. The above method requires O(log ( εn)BT ) iterations for each of logκ T

datasets.

In each of these iterations, we have to identify the rank of an element (requiring O(log (εn))

disk accesses) per dataset, hence, the total disk access is O
(
log2 ( εnBT ) logκ (T )

)
.

4.4.5.2 Space Complexity

Lemma 12. Total memory required by the summary for historical data, S(H) is O
(
κ logκ (T )

ε

)
.

Proof. If we consider that number of time steps elapsed so far is T , and the number of data

partitions merged together into a single partition is κ, then the maximum number of levels
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that S(H) can have is logκ (T ). Each level has at most κ summaries, each of size 1
ε1

= O
(
1
ε

)
.

Hence, H requires a total space of O
(
κ logκ (T )

ε

)
to maintain summary S(H).

Lemma 13. Total memory required by the summary of streaming data to maintain S(R) is

O
(
log(εm)

ε

)
.

Proof. Given a rank r, an ε2-approximate streaming algorithm requires a total memory of

O
(
log(εm)

ε

)
to return an element with an approximate rank r from R. This algorithm is used

by Algorithm 10 to construct S(R). S(R) requires d 1
ε2

+ 1 = O
(
1
ε

)
words of memory to store

ceilfrac1ε2 + 1 elements from data stream.

Hence total memory required to construct and maintain S(R) is O
(
log(εm)

ε

)
.

Lemma 14. The total main memory required by our algorithm to find an element of rank r

from T is O
(
1
ε (log (εmT ))

)
.

Proof. We conclude from Lemmas 12 and 13 that the total memory required by our ap-

proach to maintain S(H) and S(R) is O
(
1
ε

(
log (εm) + κ log (T )

log (κ)

))
. Since κ is a constant,

the above space bound reduces to O
(
1
ε (log (εmT ))

)
. Hence our overall memory requirement

is O
(
1
ε

(
log (εm) + κ log (T )

log (κ)

))
.

We present the guarantees provided by our algorithm in Theorem 9.

Theorem 9. Our algorithm, when given an integer r ∈ [0, N), returns an element e ∈ T such

that (r−εm) ≤ rank(e, T ) ≤ (r+εm). The total main memory requirement of our algorithm is

O
(
1
ε (log (εmT ))

)
. The amortized number of disk accesses required to update H at each time step

is O( n
BT log ( nB )) and the number of disk accesses to answer a query is O

(
log (T ) log2 ( εnBT ))

)
,

where B is the block size, T is the number of time steps, m the size of the streaming data R,

n the size of historical data, and N the size of T .

We consider an example for illustration. Suppose that a time step is a day. Also, suppose

that 10TB of data is loaded into the data warehouse at each time step, for 3 years, and that

the block size is 100KB. The average number of disk operations required each day to add data

to the warehouse is about 108

3×365 × log (108), which is of the order of 106. This includes the
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disk accesses needed to add new data as well as merge older partitions. Assuming that a fast

hard disk can access 1 block per millisecond, this will take approximately 1000 seconds. The

processing time can be reduced further by parallelizing the merge operations [53]. Assuming

that approximation parameter ε is 10−6, total number of disk accesses required to answer a

query is in the order of 350, using order of 300000 words of memory.

4.5 Experiments

We report on the results of experiments to evaluate the practical performance of our algo-

rithm.

4.5.1 Experimental Setup

We used a 64-bit 4-core processor Red Hat Linux Machine, with a processor speed of 3.5GHz

and 16GB RAM to run our experiments. We implemented all the algorithms using Java 7. We

assumed a block size B of 100 KB.

Datasets We used two synthetic datasets “Normal” and “Uniform Random”, and one

real world dataset, derived from Wikipedia page view statistics.

• The Normal dataset was generated using normal distribution with a mean of 100 million

and a standard deviation of 10 million. The size of the streaming data (data that is not

leaded into the warehouse yet) is 500MB. The total data volume at each time step is 1GB,

and there are 100 time steps. Thus, the total size of historical data is 100GB.

• The Uniform dataset was generated by choosing elements uniformly at random from a

universe of integers ranging from 108 to 109. The maximum size of the streaming data is

500MB. With 100 time steps, the total size of historical data is 50GB, with 500MB per

time step.

• The Wikipedia dataset was generated using page view stats from a Wikipedia dump 1.

Each tuple of this dataset is the size of the page returned by a request to Wikipedia. The

1http://dumps.wikimedia.org/other/pagecounts-raw/
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maximum size of the streaming part of the dataset is 500MB. There were 116 time steps,

and the total size of the historical data is 58.5 GB.

Performance Metrics The two main performance measures of our algorithm are ac-

curacy and number of disk accesses. While keeping the total main memory used across all

algorithms, we compare the accuracy of different approaches, including the “quick response”,

and the more accurate response, both described in Algorithm 10.

The accuracy of an algorithm is measured using the relative error, defined as |φN−r|φN where

φN is the rank desired by the quantile query, and r is the actual rank of the element returned

by the algorithm. The performance of our algorithm is mainly measured in terms of number

of disk accesses, since these tend to dominate the CPU costs. The quantities measured are:

(1) the number of disk accesses required per time step to add a new dataset to the historical

data, and (2) the number of disk accesses required to answer a query for the φ-quantile.

4.5.2 Algorithm and Optimizations

We used the Greenwald-Khanna streaming algorithm to process streaming data, in conjunc-

tion with out on-disk and in-memory batch structures. For comparison, we implemented the

“pure-streaming” approach using two prominent deterministic streaming quantile algorithms

- Greenwald-Khanna [46] and QDigest [73]. Given a memory budget of m bytes, we allocate

m/2 bytes to the stream summary, and m/2 bytes to the batch summary. Since the size of the

data at each time step is smaller than the memory size, we used in-memory sorting to sort new

data.

When compared with Algorithm 10, we made an optimization in our program to reduce the

number of disk accesses for query processing. As described, when a quantile query is posed,

we use the Algorithm 11 to find a pair of elements within which the quantile is guaranteed to

lie. Following this, we recursively call Algorithm 12 to narrow down the range [u, v], always

making sure that the quantile lies within the range. The optimization is that the search and

narrowing of the range needs to proceed only as long as the pair of elements u and v are in

different disk blocks. Once u and v are within the same disk block, we do not use any further
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disk operations, and store the block in memory for further iterations. This yielded a significant

reduction in the number of disk accesses; for example, on the “Uniform” dataset, it reduced

the number of disk accesses from approximately 1500 to less than 300.

4.5.3 Results

Accuracy: Overall, we found that the accuracy of our algorithm is significantly better (by a

factor of 100 for a dataset with 100 time steps) than that of a pure streaming algorithm, given

the same amount of main memory. Our algorithm also provides a “quick response” using only

in-memory structures, whose accuracy is comparable to that of the pure streaming algorithms.

In all the Figures, we label our algorithm with the accurate response as “Our Algorithm”, and

the algorithm with the quick response as “Quick Response”.

We measured the relative error of different approaches with a memory budget ranging from

2.5MB to 10 MB, and the results are shown in Figures 4.3a, 4.4a and 4.5a. We observed that

the performance of the “quick response” is close to the QDigest algorithm, and the accuracy

of our “accurate response” is significantly better than the rest.

In Figures 4.3b, 4.4b and 4.5b we show the relationship of the accuracy with κ. Keeping

memory fixed at 7MB, we vary the value of κ from 2 to 40. We observe that the accuracy of

the algorithm does not depend on the merge threshold κ, and this is consistent with Theorem 9

which says that the accuracy depends only on the input parameter ε and the size of the stream.

Disk Accesses for Adding a New Batch. Figures 4.6a, 4.7a and 4.8a show the number of disk

accesses required to add a new dataset to the warehouse. This takes into account the number

of disk operations to insert the new batch, merge older partitions (if needed) and to update the

in-memory summaries of historical data. We measure the number of disk accesses for different

values of κ. We observe that the number of disk accesses to load a new batch decreases as

the value of κ increases. The reason is that as κ increases, the number of merges of partitions

decreases overall, resulting in fewer additional disk accesses after the data has been merged.

While the average number of disk accesses per time step for uniform random data is 23000

for κ = 9 and 14000 for κ = 10 (Figure 4.6a), Figure 4.9 shows that for κ = 9, the number of
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Figure 4.3: Accuracy for Uniform Random
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Figure 4.4: Accuracy for Normal
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disk accesses per time step is as low as 5000 for 89 percent of all time steps. To understand

this number, we note that with a 100KB block size, it takes 5000 disk accesses to write to

disk a single new batch of 500MB. Hence, most of the time, the disk accesses are only to write

the new partition to disk (after sorting in memory). According to Algorithm 8 every few time

steps, it is required to merge different partitions into a single partition (using Algorithm 9),

and this causes additional disk accesses. Similarly, we observe that the number of disk accesses

per time step for κ = 10 is 5000 for for 91 percent of all time steps.
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Figure 4.6: Dependence of number of disk accesses over κ, for Uniform Random

Disk Accesses for a Query. Figures 4.6b, 4.7b and 4.8b show the number of disk accesses

required to answer a query, keeping the memory budget fixed at 7MB. We evaluated using dif-

ferent values for the memory budget and the results are similar. We observe that as κ increases

the number of disk accesses increases. One reason is that as κ is increased, the number of data

partitions per level increases. Since the total memory is fixed, the size of the summary per

data partition decreases. A larger interval size in the summary leads to a larger number of disk

accesses to answer a query accurately.

Queries over a Timed Window. Our algorithm support queries over a window consisting

of a range of time steps. This is possible because historical datasets are stored across different
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Figure 4.7: Dependence of number of disk accesses over κ, for Normal

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  5  10  15  20  25  30  35  40

A
v
g

 n
o

. 
o

f 
d

is
k
 a

c
c
e

s
s
e

s
 /

 t
im

e
 s

te
p

Merge Threshold ’κ’

Average disk access (overall)
Average disk access for Merge

(a) Average Disk Accesses per time step for Update
vs κ

 0

 50

 100

 150

 200

 0  5  10  15  20  25  30  35

D
is

k
 a

c
c
e

s
s
e

s
 t

o
 a

n
s
w

e
r 

q
u

e
ry

Merge Threshold ’κ’

(b) No. of Disk Accesses for Query vs κ

Figure 4.8: Dependence of number of disk accesses over κ, for Wikipedia

data partitions based on their time steps, and each partition consists of data in a contiguous

range of time steps. In order to answer a query over a window, the algorithm accesses only

those data partitions that corresponds to the time steps of the current window. Since older data

partitions are merged together, it is easiest to answer queries over windows whose boundaries

are aligned with the partition boundaries.

Figure 4.10 shows the permissible window sizes, in terms of time steps, over which a query

can be answer, for Normal dataset with 100 time steps. We have shown the graphs for κ = 3

and κ = 10. We observe that for κ = 3, a query can be made over window of sizes 1, 4, 7, 10,
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Figure 4.9: Frequency of Disk Accesses over all time steps, for Uniform Random

19, 45, 72, 100, whereas for κ = 5, the window sizes for querying are 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 20, 30, 40, 50, 60, 70, 80, 90, 100. We observe that for larger values of κ, we have more

window size selections because the number of merges are fewer. The number of disk accesses for

answering query over different window increases with the size of the window due to an increase

in the size of the data within the scope of the window.
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Figure 4.10: Dependence of number of disk accesses over window sizes, for Normal

4.5.4 Conclusion

Many “real-time big data” scenarios require an integrated analysis of live streaming data

and historical data. While there have been multiple attempts at designing a processing archi-
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tecture for such an analysis, query processing strategies are lacking. We present a new method

to process one of the most fundamental analytical primitives, quantile queries, on the union

of historical and streaming data. Our method combines an index on historical data with a

memory-efficient sketch on streaming data to answer quantile queries with accuracy-resource

trade-offs that are significantly better than current solutions that are based solely on disk-

resident indexes or solely on streaming algorithms. The issues involved in a solution are how to

combine a streaming algorithm that depends on in-memory summaries with an on-disk index

for the historical data. Our theory and experiments indicate that ours is a practical algorithm,

potentially scalable to very large historical data.

There are some natural directions for future work. First, can we improve the trade-off

between accuracy, memory and disk accesses through improved data structures? Another

direction is to consider other classes of aggregates in this model of integrated processing of

historical and streaming data.
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CHAPTER 5. SUMMARY AND DISCUSSION

5.1 Conclusion

As real-time data analytics is becoming increasingly important, data stream analytics play

a key role in finding patterns in various scenarios like internet traffic monitoring, user behavior

analysis, Internet of things and so on. We considered three user requirements for data analyt-

ics : distributed streaming, sliding window and integration of historical and streaming data.

We solved the following prominent streaming problems for each of these user requirements :

1) performed detailed experimental evaluation of distinct counting streaming algorithms over

sliding window, 2) designed a communication efficient algorithm to identify persistent elements

from distributed streams over both infinite and sliding window, provided strong theoretical

guarantees and performed detailed experimental evaluation of the proposed algorithms, and 3)

designed a low cost algorithm to find quantiles from a union of historical and streaming data,

provided strong theoretical guarantees and performed detailed experimental evaluation.

Though we solved the above described problems, there are many important database prob-

lems that remain open for these user requirements in the context of large distributed data, such

as finding distinct count or heavy hitters from a union of historical and streaming data. These

problems constitute an interesting future course of research.
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